MODEL IN THE LOOP SIMULATION OF AN ACTIVE FRONT WHEEL STEERING SYSTEM FOR WHEELED ARMORED VEHICLE

MAZUAN BIN MANSOR

Thesis submitted to the Center for Graduate Studies, **Universiti Pertahanan Nasional Malaysia**, in Fulfillment of the Requirements for the Degree of Master of Science

(Mechanical Engineering)

December 2016

ABSTRACT

During firing on the move, handling performance of an armored vehicle will be affected which causing it to lose its directional stability. This is due to an impulse force created at the center of gun turret, which produce an unwanted vaw moment at the center of gravity (COG) of the armored vehicle. The unwanted yaw motion created cause the directional stability of the armored vehicle is violated where it will sway from its intended path without any input from driver. To reject the unwanted yaw moment in purposed to improve the handling ability of the armored and also to make it able to perform firing while moving, this study deals with proposing a new Active Front Wheel Steering (AFWS) system actuator which consists of Ravigneaux planetary gear which was previously applied in automotive transmission system. This study focused on developing a control strategy for the AFWS system in order to reduce unwanted yaw motion created by armored vehicle during the execution of firing using gun turret system. This study also includes the explanation of the design, working principle and the derivation of the planetary gear mathematical model based on its dynamic behavior. The mathematical model is validated with the actual system to assess the model validity. The proposed AFWS actuator is then implemented into Pitman arm steering system test rig to analyze its robustness and functionality using position tracking control method. The position tracking control method is conducted using Model-in-Loop simulation which consists of Software-in-Loops simulation (SILs) and Hardware-in-Loop simulation (HILs). SILs is applied to the position tracking control in order to validate the mathematical model developed while HILs is used to test the functionality of the proposed AFWS actuator in actuating the steering system. The proposed control strategy consists of PI controller tuned by neural network system which is named as Neuro-PI controller. The Neuro-PI controller is optimized by Genetic algorithm optimization tools to obtained the most optimum activation function to be applied in the neural network system. The optimum neural system is selected based on its performance in controlling the handling stability of armored vehicle in reducing the unwanted yaw motion. The Neuro-PI controller with Hardlims activation function shows a better performance which able to reduce up to 40% of unwanted yaw motion compared to other activation function. The robustness of the optimum controller is tested using HILs together with the implementation of the proposed AFWS actuator. The result from the experiment shows that both the proposed AFWS actuator and the controller can be applied in the armored vehicle to improve the handling stability by reducing the yaw motion produced during the execution of firing while in motion.

ABSTRAK

Dalam melaksanakan penembakan semasa pergerakan, pelaksanaan pengendalian sesuatu kenderaan perisai akan terjejas yang menyebabkan ia kehilangan kestabilan arah. Ini adalah kerana daya dorongan wujud di tengah-tengah turet, yang menghasilkan kadar yaw yang tidak diingini di pusat graviti (COG) kenderaan perisai tersebut. Kajian ini berkaitan dengan cadangan untuk menghasilkan penggerak baru bagi sistem stereng hadapan aktif yang terdiri daripada planet gear Ravigneaux di mana sebelum ini ianya digunakan sebagai sistem transmisi di dalam bidang automotif. Kajian ini juga termasuk penjelasan dalam hal reka bentuk, prinsip kerja dan penghasilan model matematik untuk planet gear tersebut berdasarkan tingkah laku dinamik gear itu sendiri. Model matematik tersebut disahkan dengan sistem sebenar untuk menilai kesahihan model matematik yang dihasilkan. Pengerak stereng hadapan aktif yang dicadangkan dilaksanakan ke dalam sistem pelantar Pitman arm. Kajian ini dilanjutkan dengan menganalisis keteguhan dan tahap fungsi penggerak tersebut dengan menggunakan kaedah pengesanan kawalan kedudukan. Kaedah pengesanan kawalan kedudukan dijalankan menggunakan simulasi Model-in-Loop (MiLs) di mana terdiri daripada simulasi Software-in-Loop (SILs) dan simulasi Hardware-in-Loop (HILs). Dalam eksperimen mengesan kawalan kedudukan, SILs digunakan sebagai pengesahan model matematik yang telah dihasilkan. Manakala tujuan HILs digunakan untuk menguji kemampuan penggerak stereng hadapan aktif yang dicadangkan dalam menggerakkan sistem stereng. Selain itu, kajian ini juga memberi tumpuan kepada penghasilan strategi kawalan untuk sistem stereng hadapan aktif yang bertujuan mengurangkan gerakan rewang yang tidak diingini yang terwujud dalam kenderaan berperisai semasa perlaksanaan tembakan menggunakan sistem senjata turet. Strategi kawalan yang dicadangkan itu terdiri daripada pengawal PI ditala oleh sistem rangkaian neural yang diberi nama sebagai pengawal Neuro-PI. Pengawal Neuro-PI dioptimumkan oleh Genetic Algorithm. Pengoptimuman tersebut bertujuan untuk mendapatkan fungsi pengaktifan yang paling optimum untuk diaplikasikan dalam sistem rangkaian steering hadapan aktif. Pengawal Neuro-PI dengan fungsi pengaktifan Hardlims menunjukkan prestasi yang lebih baik di mana ia mampu mengurangkan sehingga 40% daripada gerakan yaw tidak diingini berbanding fungsi pengaktifan lain. Keteguhan pengawal yang paling optimum diuji menggunakan HILs bersama-sama dengan penggerak stereng hadapan aktif yang dicadangkan. Hasil daripada eksperimen menunjukkan bahawa kedua-dua cadangan penggerak stereng hadapan aktif dan pengawal Neuro-PI boleh digunakan dalam kenderaan berperisai untuk meningkatkan kestabilan pengendalian dengan mengurangkan pergerakan rewang yang tidak diingini terhasil semasa perlaksanaan tembakan semasa bergerak.

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my main supervisor, Assc. Prof. Dr. Khisbullah Hudha for his guidance, support and constant encouragement throughout my research. I also would like to thank En. Zulkiffli Abd Kadir and Cik Hafizah Amer for their advices during the research. I gratefully acknowledge to Kementerian Pengajian Tinggi (KPT) and Universiti Pertahanan Nasional Malaysia (UPNM) for providing the financial support throughout my study.

Furthermore, I would like to take this opportunity to thank my colleagues especially lab mate in automotive laboratory of UPNM, Vimal Rau A/L Aparow, Muhammad Luqman Hakim Abd Rahman, Abdurahman Dwijotomo, Mohd Sabirin Rahmat, Akhimullah Subari, Abdul Muhaimin Idris, Hafiz Ikhwan Amin and Izzat Satar for their outstanding collaboration for being a very good sharing partner during my research. I also want to show my appreciation to Junaidi Asiran, fabrication laboratory technician who was helping me in fabricating the AFWS actuator by giving advices and providing hardware tools.

Finally, my deepest grateful and thanks go to my family, especially my mother who always support and motivate me during hardship. Including continuous prays for my prosperity.

APPROVAL

I certify that an Examination Committee has met on 10th NOVEMBER 2016 to conduct the final examination of MAZUAN BIN MANSOR on his degree thesis entitled 'MODEL IN THE LOOP SIMULATION OF AN ACTIVE FRONT WHEEL STEERING SYSTEM FOR WHEELED ARMORED VEHICLE'. The committee recommends that the student be awarded the degree of Master of Science (Mechanical Engineering).

Members of Examination Committee were as follows.

Wan Ali Bin Wan Mat, PhD

Professor Ir Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairperson)

Megat Mohamad Hamdan Bin Megat Ahmad, PhD

Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Saiful Auar Bin Abu Bakar, PhD

Faculty of Mechanical Engineering Universiti Teknologi Malaysia (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science (Mechanical Engineering). The members of the Supervisory Committee were as follows.

Khisbullah Hudha, Phd

Associate Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Supervisor)

DECLARATION

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA DECLARATION OF THESIS

Author's full name	: Mazuan Bin Mansor
Date of birth	: 16 July 1991
Title	: Model In The Loop Simulation Of An Active Front Wheel Steering
	System for Wheeled Armored Vehicle
Academic session	: December 2014 – December 2016

I declare that this thesis is classified as:

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE OF STUDENT SIGNATURE OF SUPERVISOR

IC/PASSPORT NO.

NAME OF SUPERVISOR

Date:

Date:

TABLE OF CONTENTS

ABSTRACT	II
ABSTRAK	III
ACKNOWLEDGEMENTS	IV
APPROVAL	V
APPROVAL	VI
DECLARATION	VII
TABLE OF CONTENTS	VIII
LIST OF TABLES	XIV
LIST OF FIGURES	XV
LIST OF ABBREVIATION AND SYMBOLS	XX
CHAPTER 1	1
INTRODUCTION	1
1.1 Overview	1
1.2 Background of the study	3
1.3 Problem Statement	7
1.4 Objectives and scopes of the study	8
1.5 Methodology	9
1.6 Structure and layout of the thesis	13
CHAPTER 2	15
LITERATURE REVIEW	15
2.1 Overview	15
2.2 Stability control for armored vehicle	16

2.3 Activ	ve Front Wheel Steering (AFWS) system	18
2.3.1	Yaw stability system using Active Front Wheel Steering system	19
2.4 Revie	ew on previous proposed design for AFWS actuator	25
2.5 Mod	el-in-Loop simulation	28
2.5.1	Software-in-Loop simulation	29
2.5.2	Hardware-in-Loop simulation	30
2.6 Sum	mary	30
CHAPTER 3	3	32
MODELL	ING AND VALIDATION OF ACTIVE FRONT WHEEL STEE	RING
SYSTEM	ACTUATOR	32
3.1 Over	view	32
3.2 Design of Proposed AFWS actuator		32
3.3 Insta	llation of AFWS actuator into Pitman arm steering system	35
3.4 AFW	/S actuator working principle	36
3.4.1	Case 1: Deactivation of AFWS actuator	36
3.4.2	Case 2: Activation of AFWS actuator	37
3.5 AFW	/S actuator characterization experiment	38
3.5.1	Experimental setup	38
3.5.2	Experimental procedure and result	39
3.6 Math	nematical modelling of proposed AFWS actuator	44
3.7 Valio	lation of AFWS actuator	48
3.8 Sum	mary	50

ARM STEERING SYSTEM	51
4.1 Overview	51
4.2 Pitman arm steering system model	52
4.3 Control structure for position tracking control using PID controller	61
4.3.1 Software-in-Loop structure	62
4.3.2 Hardware-in-Loop structure	63
4.3.2.1 Hardware-in-Loop setup	65
4.3.2.2 Hardware-in-Loop flow	67
4.4 Simulation parameters	68
4.5 Position tracking performance results	69
4.5.1 Software-in-Loop simulation	69
4.5.1.1 Case 1: AFWS actuator response for sine functions with frequency o	f
0.25 Hz	69
4.5.1.2 Case 2: AFWS actuator response for square functions with frequency	y of
0.25 Hz	70
4.5.1.3 Case 3: AFWS actuator response for sine functions with frequency o	f
0.5 Hz	71
4.5.1.4 Case 4: AFWS actuator response for square functions with frequency	y of
0.5 Hz	72
4.5.1.5 Case 5: AFWS actuator response for sine functions with frequency o	f 1.0
Hz	73

51

4.5.1.6	Case 6: AFWS actuator response for square functions with frequency	of
	1.0 Hz	74
4.5.2	Hardware-in-Loop simulation	75
4.5.2.1	Case 1: AFWS actuator response for sine functions with frequency of	
	0.25 Hz	75
4.5.2.2	Case 2: AFWS actuator response for square functions with frequency	of
	0.25 Hz	76
4.5.2.3	Case 3: AFWS actuator response for sine functions with frequency of	f
	0.5 Hz	78
4.5.2.4	Case 4: AFWS actuator response for square functions with frequency	of
	0.5 Hz	79
4.5.2.5	AFWS actuator response for sine function with frequency of 1 Hz	80
4.5.2.6	AFWS actuator response for square function with frequency of 1 Hz	81
4.6 Sumn	nary	82
CHAPTER 5		83
MODELLI	ING AND OPTIMIZATION OF AFWS CONTROL FOR FIRING	
DISTURBA	ANCE REJECTION	83
5.1 Overv	view	83
5.2 14 De	gree-of-Freedom armored vehicle modelling	84

- 5.2.1
 Ride model
 84

 5.2.2
 Handling model
 97

 5.2.3
 Tire model
 102
- 5.2.4 Firing disturbance model 106

5.3 Verification of 14 DOF armored vehicle	108
5.3.1 Introduction to CARSIM	110
5.3.2 Verification procedure	111
5.3.3 Verification result	111
5.3.3.1 Step steer test	111
5.3.3.2 Double lane change test	113
5.3.3.3 Slalom steer test	114
5.4 Development of AFWS controller using outer and inner loop	115
5.4.1 Inner controller using AFWS actuator and Pitman arm steerin	g 116
5.4.2 Outer loop controller design using Neuro-PI controller	116
5.4.2.1 Neural network system	117
5.4.2.2 Interconnection of neural network in Neuro-PI controller	117
5.4.2.3 Neural Network activation function selection	123
5.4.2.4 Optimization for Neuro-PI controller using genetic algorithm	124
5.4.3 Performance evaluation	126
5.5 Summary	131
CHAPTER 6	132
HARDWARE-IN-LOOP SIMULATION OF AFWS SYSTEM FOR A	RMORED
VEHICLE DUE TO FIRING DISTURBANCE	132
6.1 Overview	132
6.2 Control design	133
6.3 Performance evaluation	134
6.3.1 Case 1: Vehicle speed of 40 km/h and 30 Deg of firing angle	135

6.3	2 Case 2: Vehicle speed of 60 km/h and 30 Deg of firing angle	138
6.3	3 Case 3: Vehicle speed of 40 km/h and 60 Deg of firing angle	141
6.3	4 Case 4: Vehicle speed of 60 km/h and 60 Deg of firing angle	143
6.3	5 Case 5: Vehicle speed of 40 km/h and 90 Deg of firing angle	146
6.3	6 Case 6: Vehicle speed of 60 km/h and 90 Deg of firing angle	149
6.4 S	ammary	151
СНАРТИ	R 7	153
DISCU	SSION AND CONCLUSION	153
7.1 Overview		153
7.2 Conclusion		154
7.3 Summary of research contribution		156
7.4 Recommendation and future works		156
REFE	ENCES	158
APPEN	DIX A: GENETIC ALGORITHM OPTIMIZATION CODING	169
APPEN	DIX B: DETAIL DRAWINGS OF AFWS ACTUATOR	171
APPEN	DIX C: PLANETARY GEAR PARAMETERS	175
BIODA	BIODATA OF STUDENT	
LIST C	FPUBLICATIONS	179

LIST OF TABLES

Table No.	Title	Page
Table 1.1	Comparison between wheeled and tracked armored vehicle	2
Table 2.1	Planetary gear parameters for AFWS actuator (Chi et. al., 2010) 28
Table 4.1	PID parameters for position tracking control	69
Table 5.1	Empirical coefficient for magic tire formula	105
Table 5.2	Shape factor value, C for all cases	105
Table 5.3	Standard amunition parameters (HE K242)	106
Table 5.4	Vehicle Parameters	110

LIST OF FIGURES

Figure No	Title	Page
Figure 1.1 SIBMAS	(6x6) wheeled armored vehicle	4
Figure 1.2 Schemati	c diagram of differences path between with and without A	FWS
system		4
Figure 1.3 Schemati	ic views of AFWS system	6
Figure 1.4 Research	flow chart	12
Figure 2.1 Structure	e of AFWS Fuzzy logic controller (Jian Ma et. al., 2010)	20
Figure 2.2 Vehicle y	aw control system (Yue et. al., 2013)	21
Figure 2.3 AFWS co	ontrol system using ARDC strategy (Liu et. al., 2010)	22
Figure 2.4 Configur	ration of BP Neural network (Wei et. al., 2013)	23
Figure 2.5 Control s	strategy for BP neural network PID (Wei et. al., 2013)	25
Figure 2.6 Double p	lanetary gear for BMW 5-series (Klier et. al., 2004)	26
Figure 2.7 Example	e of the variable steering ratio as function of vehicle sta	ability
(Klier, 2004)		27
Figure 2.8 Schemati	ic diagram of proposed AFWS actuator (Chi et. al., 2010)	27
Figure 3.1 Exploded	l view for Ravigneaux planetary gear set	33
Figure 3.2 Schemati	ic diagram for cross-section of the Ravigneaux gear set	34
Figure 3.3 Exploded	l view for AFWS actuator	35
Figure 3.4 Impleme	ntation of AFWS actuator into Pitman arm steering syste	m 36

Figure 3.5 Behavior of planetary gear when AFWS is not activated	37
Figure 3.6 Behavior of planetary gear when AFWS is activated	38
Figure 3.7 Experiment setup for AFWS actuator validation	39
Figure 3.8 Sine input for 0.5 Hz	40
Figure 3.9 Square input for 0.5 Hz	41
Figure 3.10 Sine input for 0.75 Hz	42
Figure 3.11 Square input for 0.75 Hz	43
Figure 3.12 Schematic of planetary gear used as AFWS actuator	44
Figure 3.13 Square signal for 0.5 Hz	48
Figure 3.14 Sine signal for 0.5 Hz	49
Figure 3.15 Square signal for 0.75 Hz	49
Figure 3.16 Sine signal for 0.75 Hz	49
Figure 4.1 Pitman arm steering system schematic diagram	53
Figure 4.2 Inner loop control for SILs	62
Figure 4.3 Inner loop controller for HILs	64
Figure 4.4 Real-time interface for inner loop controller	65
Figure 4.5 Hardware-in-Loop simulation experiment setup	67
Figure 4.6 Hardware-in-Loop simulation experiment working flow	68
Figure 4.7 Sine input for 0.25 Hz	70
Figure 4.8 Square input 0.25 Hz	71
Figure 4.9 Sine input for 0.5 Hz	72
Figure 4.10 Square input for 0.5 Hz	73
Figure 4.11 Sine input for 1.0 Hz	74

Figure 4.12 Square input for 1.0 Hz	75
Figure 4.13 Sine input for 0.25 Hz	76
Figure 4.14 Square input for 0.25 Hz	77
Figure 4.15 Sine input for 0.5 Hz	78
Figure 4.16 Square input for 0.5 Hz	79
Figure 4.17 Sine input with 1.0 Hz	80
Figure 4.18 Square input with 1.0 Hz	81
Figure 5.1 7 DOF vehicle ride model schematic diagram	85
Figure 5.2 Suspension force acted on the sprung mass	86
Figure 5.3 Quarter vehicle model for ride model at each wheel	87
Figure 5.4 Free body diagram for ride vehicle model (pitching)	89
Figure 5.5 Free body diagram for ride vehicle model (rolling)	90
Figure 5.6 Side view of armored vehicle	93
Figure 5.7 Front view of armored vehicle	94
Figure 5.8 Force exerted on unsprung mass	95
Figure 5.9 Full vehicle handling model for armored vehicle	98
Figure 5.10 Roll motion at lateral direction	101
Figure 5.11 Tire operating at a slip angle	103
Figure 5.12 Firing force disturbance signal	108
Figure 5.13 Simulink block diagram for 14 DOF vehicle model	109
Figure 5.14 Yaw rate response for step steer test	112
Figure 5.15 Lateral acceleration response for step steer test	112
Figure 5.16 Yaw rate response for DLC test	113

Figure 5.17 Lateral acceleration response for step steer test	113
Figure 5.18 Yaw rate response for slalom steer test	114
Figure 5.19 Lateral acceleration response for slalom steer test	115
Figure 5.20 A single neuron in neural network system	118
Figure 5.21 Multilayer neural network	120
Figure 5.22 Neural-PI controller structure for AFWS System	121
Figure 5.23 Yaw rate response performance comparison	127
Figure 5.24 Yaw angle response performance comparison	128
Figure 5.25 Lateral displacement response performance comparison	129
Figure 5.26 Lateral acceleration response performance comparison	130
Figure 5.27 Roll angle response performance comparison	130
Figure 6.1 Control structure of AFWS for HILs experiment	134
Figure 6.2 Wheel angle correction	135
Figure 6.3 Yaw rate of Armored vehicle body	135
Figure 6.4 Yaw angle of armored vehicle body	136
Figure 6.5 Lateral displacement of armored vehicle body	136
Figure 6.6 Lateral acceleration of armored vehicle body	136
Figure 6.7 Wheel angle correction response	138
Figure 6.8 Yaw rate of armored vehicle body	138
Figure 6.9 Yaw angle of armored vehicle body	139
Figure 6.10 Lateral displacement of armored vehicle body	139
Figure 6.11 Lateral acceleration of armored vehicle body	139
Figure 6.12 Wheel angle correction response	141

Figure 6.13 Yaw rate of armored vehicle body	141
Figure 6.14 Yaw angle of armored vehicle body	142
Figure 6.15 Lateral displacement of armored vehicle body	142
Figure 6.16 Lateral acceleration of armored vehicle body	142
Figure 6.17 Wheel angle correction response	143
Figure 6.18 Yaw rate of armored vehicle body	144
Figure 6.19 Yaw angle of armored vehicle body	144
Figure 6.20 Lateral displacement of armored vehicle body	145
Figure 6.21 Lateral acceleration of armored vehicle body	145
Figure 6.22 Wheel angle correction response	146
Figure 6.23 Yaw rate of armored vehicle body	147
Figure 6.24 Yaw angle of armored vehicle body	147
Figure 6.25 Lateral displacement of armored vehicle body	147
Figure 6.26 Lateral acceleration of armored vehicle body	148
Figure 6.27 Wheel angle correction response	149
Figure 6.28 Yaw rate of armored vehicle body	149
Figure 6.29 Yaw angle of armored vehicle body	150
Figure 6.30 Lateral displacement of armored vehicle body	150
Figure 6.31 Lateral acceleration of armored vehicle body	150

LIST OF ABBREVIATION AND SYMBOLS

a_x	Longitudinal acceleration
a _y	Lateral acceleration
• γ	Vehicle yaw rate
$lpha_{_f}$	Front wheel slip angle
α_r	Rear wheel slip angle
${\delta}_{s}$	Sun gear angle
δ_{c}	Ring gear angle
${\delta}_p$	Planet gear angle
T_{ai}	Wheel acceleration torque
T_{bi}	Wheel brake torque
Y _r	Transitional displacement of the steering rack
$\delta_{\scriptscriptstyle SLU}$	Rotational displacement of upper steering linkage
$\delta_{\scriptscriptstyle SLL}$	Rotational displacement of lower steering linkage
T_{K}	Kingpin torque
B_{SL}	Lower steering column viscous damping
	coefficient
r_p	Length of Pitman arm member
B_{R}	Steering linkage viscous damping

CF_r	Coulomb friction breakout force on steering
	linkage
CF_{FW}	Coulomb friction breakout force on road wheel
K_{i}	Tire spring constant
r _s	Sun gear radius
r_{pi}	Planet gear radius
r_c	Ring gear radius
F_{f}	Firing force
C_d	Damper constant
F _d	Damper force
F_{S}	Spring force
F_{x}	Longitudinal force
F_{y}	Lateral force
K _s	Spring constant
ka	Gear meshing stiffness
m_s	Sprung mass
m_u	Unsprung mass
AFWS	Active Front Wheel Steering
b	bias
CARSIM	Car simulator software
DAQ	Data acquisitions
DLC	Double lane change

DOF	Degrees of freedom
G	PID controller
GA	Genetic algorithm
Hardlims	Hard-limit transfer function
HIL	Hardware-in-Loop
HMMWV	High mobility multipurpose wheeled vehicle
MATLAB	Matrix Laboratory software
Netinv	Inverse transfer function
PID	Proportional, integral and derivative controller
RMS	Root mean square
SIL	Software-in-Loop
xPC	PC target

CHAPTER 1

INTRODUCTION

1.1 Overview

An armored vehicle is one of battle vehicles shielded by strong armor and most of them are armed with weapons. Thus, this combination made the vehicle to be operational in terms of tactical offensive and also defensive capabilities. In fact, armored vehicle is an embodiment of a unique combination of firepower, mobility and protection (R. Steeb *et. al.*, 1991). The armored vehicle is classified according to its function on the battlefield and also fitted with light, medium and heavy armored depending on its role. The general design attributes are meant to contribute in protecting the troops against mines or blast due to the attacks from the enemy

Another important criterion concerned in developing armored vehicle is the type of wheel where it can be divided into two categories: wheeled and tracked armored vehicle. Both types give different advantages in terms of mobility, survivability and supportability. P. Hornback, (1998) discusses the advantages and disadvantages of the wheeled and tracked armored vehicle which is summarized in Table 1.1.

	Tracked	wheeled
Mobility	Better mission travel time off-	Attain fast road speed on-
	road and suitable for all weather.	road but acquired longer
		time for off-road.
Survivability	More compact but the reduction	More vulnerable to small
	in agility and the bigger size	arms, grenade and mines
	cause it to be easily targeted by	but great in agility and
	the enemy.	not easily targeted by
		enemy.
Supportability	Off-road usage and greater in	Better fuel economy due
	weight cause higher fuel	to reduced friction in
	consumption to provide higher	wheel suspension,
	engine torque.	required less
		maintenance and supply
		support.

Table 1.1 Comparison between wheeled and tracked armored vehicle

Although tracked armored vehicle precedes in providing optimal solution for tactical, high-mobility off-road and to achieve restricted road profile mission and also better in survivability but wheeled armored vehicle is providing more desirable handling performance as well as it has better agility during combat.

Vehicle handling is a description of the way that wheeled armored vehicles perform transverse to their direction of motion, particularly during cornering and swerving. During a normal driving, tires of the wheeled armored vehicle remain within linear ranges of operation, where lateral forces of tire increase proportionally to tire slip angles. Consequently, the vehicle yaw rate is proportional to the steering angle at a given velocity. This linear and consistent response of the vehicle to driver steering inputs is violated when tires approach or arrive at the limit of adhesion, as may occur during emergency handling maneuvers or during riding on slippery roads. In these conditions, vehicle handling characteristics change quite quickly compared to what the driver is accustomed to, making it unmanageable for an average driver to hold mastery of the vehicle. Due to the problem, it becomes a limitation for the armored vehicle to perform an agile offensive ability tactical such as executing a firing while the vehicle is moving.

1.2 Background of the study

Recently, wheeled armored vehicles such as shown in Figure 1.1 are facing external disturbances such as rough off-road terrain, impulse force from gun firing, side wind force and un-uniform tire grip in all four tires. Hence, it requires good maneuverability, a strong driving force, stability and ride comfort to overcome the problems affecting the vehicle while in motion (Hudha *et. al.*, 2012). By considering the dynamics of ground vehicles, yaw motion that occur in a vehicle can be categorized as desired and actual yaw motions. Desired yaw motion is yaw motion needed by the driver while cornering which means it follows the driver's steering input, while actual yaw motion occurs when direction of the vehicles begin to change without any steer input from the driver. An unwanted yaw motion which occurs through external disturbances can be a contributing factor of vehicle accidents since the directional stability of the vehicle decreases abruptly. Additionally, this factor also causes the driver to lose control of the vehicle.