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 ABSTRACT 

 

During firing on the move, handling performance of an armored vehicle will be affected 

which causing it to lose its directional stability. This is due to an impulse force created at 

the center of gun turret, which produce an unwanted yaw moment at the center of gravity 

(COG) of the armored vehicle. The unwanted yaw motion created cause the directional 

stability of the armored vehicle is violated where it will sway from its intended path 

without any input from driver. To reject the unwanted yaw moment in purposed to 

improve the handling ability of the armored and also to make it able to perform firing 

while moving, this study deals with proposing a new Active Front Wheel Steering 

(AFWS) system actuator which consists of Ravigneaux planetary gear which was 

previously applied in automotive transmission system. This study focused on developing 

a control strategy for the AFWS system in order to reduce unwanted yaw motion created 

by armored vehicle during the execution of firing using gun turret system. This study 

also includes the explanation of the design, working principle and the derivation of the 

planetary gear mathematical model based on its dynamic behavior. The mathematical 

model is validated with the actual system to assess the model validity. The proposed 

AFWS actuator is then implemented into Pitman arm steering system test rig to analyze 

its robustness and functionality using position tracking control method. The position 

tracking control method is conducted using Model-in-Loop simulation which consists of 

Software-in-Loops simulation (SILs) and Hardware-in-Loop simulation (HILs). SILs is 

applied to the position tracking control in order to validate the mathematical model 

developed while HILs is used to test the functionality of the proposed AFWS actuator in 

actuating the steering system. The proposed control strategy consists of PI controller 

tuned by neural network system which is named as Neuro-PI controller. The Neuro-PI 

controller is optimized by Genetic algorithm optimization tools to obtained the most 

optimum activation function to be applied in the neural network system. The optimum 

neural system is selected based on its performance in controlling the handling stability 

of armored vehicle in reducing the unwanted yaw motion. The Neuro-PI controller with 

Hardlims activation function shows a better performance which able to reduce up to 40% 

of unwanted yaw motion compared to other activation function. The robustness of the 

optimum controller is tested using HILs together with the implementation of the 

proposed AFWS actuator. The result from the experiment shows that both the proposed 

AFWS actuator and the controller can be applied in the armored vehicle to improve the 

handling stability by reducing the yaw motion produced during the execution of firing 

while in motion.
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 ABSTRAK 

 

 

Dalam melaksanakan penembakan semasa pergerakan, pelaksanaan pengendalian 

sesuatu kenderaan perisai akan terjejas yang menyebabkan ia kehilangan kestabilan arah. 

Ini adalah kerana daya dorongan wujud di tengah-tengah turet, yang menghasilkan kadar 

yaw yang tidak diingini di pusat graviti (COG) kenderaan perisai tersebut. Kajian ini 

berkaitan dengan cadangan untuk menghasilkan penggerak baru bagi sistem stereng 

hadapan aktif yang terdiri daripada planet gear Ravigneaux di mana sebelum ini ianya 

digunakan sebagai sistem transmisi di dalam bidang automotif. Kajian ini juga termasuk 

penjelasan dalam hal reka bentuk, prinsip kerja dan penghasilan model matematik untuk 

planet gear tersebut berdasarkan tingkah laku dinamik gear itu sendiri. Model matematik 

tersebut disahkan dengan sistem sebenar untuk menilai kesahihan model matematik yang 

dihasilkan. Pengerak stereng hadapan aktif yang dicadangkan dilaksanakan ke dalam 

sistem pelantar Pitman arm. Kajian ini dilanjutkan dengan menganalisis keteguhan dan 

tahap fungsi penggerak tersebut dengan menggunakan kaedah pengesanan kawalan 

kedudukan. Kaedah pengesanan kawalan kedudukan dijalankan menggunakan simulasi 

Model-in-Loop (MiLs) di mana terdiri daripada simulasi Software-in-Loop (SILs) dan 

simulasi Hardware-in-Loop (HILs). Dalam eksperimen mengesan kawalan kedudukan, 

SILs digunakan  sebagai pengesahan model matematik yang telah dihasilkan. Manakala 

tujuan HILs digunakan untuk menguji kemampuan penggerak stereng hadapan aktif yang 

dicadangkan dalam menggerakkan sistem stereng. Selain itu, kajian ini juga memberi 

tumpuan kepada penghasilan strategi kawalan untuk sistem stereng hadapan aktif yang 

bertujuan mengurangkan gerakan rewang yang tidak diingini yang terwujud dalam 

kenderaan berperisai semasa perlaksanaan tembakan menggunakan sistem senjata turet. 

Strategi kawalan yang dicadangkan itu terdiri daripada pengawal PI ditala oleh sistem 

rangkaian neural yang diberi nama sebagai pengawal Neuro-PI. Pengawal Neuro-PI 

dioptimumkan oleh Genetic Algorithm. Pengoptimuman tersebut bertujuan untuk 

mendapatkan fungsi pengaktifan yang paling optimum untuk diaplikasikan dalam sistem 

rangkaian steering hadapan aktif. Pengawal Neuro-PI dengan fungsi pengaktifan 

Hardlims menunjukkan prestasi yang lebih baik di mana ia mampu mengurangkan 

sehingga 40% daripada gerakan yaw tidak diingini berbanding fungsi pengaktifan lain. 

Keteguhan pengawal yang paling optimum diuji menggunakan HILs bersama-sama 

dengan penggerak stereng hadapan aktif yang dicadangkan. Hasil daripada eksperimen 

menunjukkan bahawa kedua-dua cadangan penggerak stereng hadapan aktif dan 

pengawal Neuro-PI boleh digunakan dalam kenderaan berperisai untuk meningkatkan 

kestabilan pengendalian dengan mengurangkan pergerakan rewang yang tidak diingini 

terhasil semasa perlaksanaan tembakan semasa bergerak. 
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CHAPTER 1   

 

 

 INTRODUCTION 

 

 

1.1  Overview  

 

An armored vehicle is one of battle vehicles shielded by strong armor and most of 

them are armed with weapons. Thus, this combination made the vehicle to be operational 

in terms of tactical offensive and also defensive capabilities. In fact, armored vehicle is an 

embodiment of a unique combination of firepower, mobility and protection (R. Steeb et. 

al., 1991). The armored vehicle is classified according to its function on the battlefield 

and also fitted with light, medium and heavy armored depending on its role. The general 

design attributes are meant to contribute in protecting the troops against mines or blast 

due to the attacks from the enemy 

 

Another important criterion concerned in developing armored vehicle is the type of 

wheel where it can be divided into two categories: wheeled and tracked armored vehicle. 

Both types give different advantages in terms of mobility, survivability and supportability. 
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P. Hornback, (1998) discusses the advantages and disadvantages of the wheeled and 

tracked armored vehicle which is summarized in Table 1.1. 

 

 Table 1.1 Comparison between wheeled and tracked armored vehicle 

 Tracked wheeled 

Mobility Better mission travel time off-

road and suitable for all weather. 

Attain fast road speed on-

road but acquired longer 

time for off-road. 

Survivability More compact but the reduction 

in agility and the bigger size 

cause it to be easily targeted by 

the enemy. 

 

More vulnerable to small 

arms, grenade and mines 

but great in agility and 

not easily targeted by 

enemy. 

Supportability Off-road usage and greater in 

weight cause higher fuel 

consumption to provide higher 

engine torque. 

Better fuel economy due 

to reduced friction in 

wheel suspension, 

required less 

maintenance and supply 

support. 

 

Although tracked armored vehicle precedes in providing optimal solution for 

tactical, high-mobility off-road and to achieve restricted road profile mission and also 

better in survivability but wheeled armored vehicle is providing more desirable handling 

performance as well as it has better agility during combat. 

 

Vehicle handling is a description of the way that wheeled armored vehicles perform 

transverse to their direction of motion, particularly during cornering and swerving. During 

a normal driving, tires of the wheeled armored vehicle remain within linear ranges of 

operation, where lateral forces of tire increase proportionally to tire slip angles. 
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Consequently, the vehicle yaw rate is proportional to the steering angle at a given velocity. 

This linear and consistent response of the vehicle to driver steering inputs is violated when 

tires approach or arrive at the limit of adhesion, as may occur during emergency handling 

maneuvers or during riding on slippery roads. In these conditions, vehicle handling 

characteristics change quite quickly compared to what the driver is accustomed to, making 

it unmanageable for an average driver to hold mastery of the vehicle. Due to the problem, 

it becomes a limitation for the armored vehicle to perform an agile offensive ability 

tactical such as executing a firing while the vehicle is moving. 

 

1.2 Background of the study 

 

Recently, wheeled armored vehicles such as shown in Figure 1.1 are facing external 

disturbances such as rough off-road terrain, impulse force from gun firing, side wind force 

and un-uniform tire grip in all four tires. Hence, it requires good maneuverability, a strong 

driving force, stability and ride comfort to overcome the problems affecting the vehicle 

while in motion (Hudha et. al., 2012). By considering the dynamics of ground vehicles, 

yaw motion that occur in a vehicle can be categorized as desired and actual yaw motions. 

Desired yaw motion is yaw motion needed by the driver while cornering which means it 

follows the driver’s steering input, while actual yaw motion occurs when direction of the 

vehicles begin to change without any steer input from the driver. An unwanted yaw motion 

which occurs through external disturbances can be a contributing factor of vehicle 

accidents since the directional stability of the vehicle decreases abruptly. Additionally, 

this factor also causes the driver to lose control of the vehicle. 


