INVESTIGATION ON THE OPTICAL AND THERMAL CONDUCTIVITY CHARACTERISTICS OF NANOFLUIDS

ATHIRAH NAJWA ZAABA

MASTER OF SCIENCE UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2017

INVESTIGATION ON THE OPTICAL AND THERMAL CONDUCTIVITY

CHARACTERISTICS OF NANOFLUID

ATHIRAH NAJWA ZAABA

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the the Degree of Master of Science (Mechanical Engineering)

June 2017

ABSTRACT

A renewable power source such as solar energy is one of the possible solutions that could be used to solve the problem of global warming caused by fossil fuels which contributed to a high carbon dioxide emissions. Solar energy is naturally available as it derived from the sun that can be transformed into thermal energy which can be used by human using a device such as solar collector. Conventional heat transfer fluid such as water and ethylene glycol are regarded as poor solar absorber and affect the efficiency of the solar thermal system. Addition of nanoparticles into these fluids can enhance its optical and thermal conductivity. This new generation of heat transfer fluid known as nanofluids. The aims of this study are to investigate theoretically and experimentally the optical and thermal conductivity characteristics of titanium dioxide and aluminium oxide based nanofluids. These two particles were selected due to the availability in market and the classical model of Rayleigh Approach (RA) for optical properties can be applied as their sizes are very small. Effects Arabic. Sodium dodecylbenzenesulfonate; of surfactant (Gum polyvinylpyrrolidone, particle size (<13nm, <21nm and <50 nm), volume percentages of nanoparticles (0.002, 0.004, 0.006, 0.008 and 0.010 vol. %) and pH (3, 5 and 9) on optical properties of nanofluids have also been investigated. Apart from that, the stability of nanofluids was measured through zeta potential measurement and observation. KD2-Pro thermal properties analyzer and UV-Vis spectrophotometer were used to measure the thermal conductivity and optical properties of the samples, respectively. In stability measurement using zeta potential, SDBS surfactant exhibited highest zeta potential compared to other surfactants for both titanium dioxide and aluminium oxide nanofluids. Based on the observation method, titanium dioxide is

poor in stability in most of conditions at 0.01% of volume percentages compared to aluminium oxide nanofluids The analytical results based on Rayleigh approach showed that the bigger size (<50nm) of nanoparticles and the larger the volume percentages of nanoparticles (0.010 vol. %) lead to a higher extinction coefficient of both nanofluids. The comparison of extinction coefficient between theoretical and experimental was successfully calculated in this study. All types of nanofluid showed better thermal conductivity compared to distilled water. Titanium dioxide gave the highest enhancement (28.17%) of thermal conductivity compared to base fluid. Finally, titanium dioxide with addition of Gum Arabic surfactant was selected to study the effect of elapse time on nanofluid due to a good stability, optical and thermal conductivity. From this study, thermal conductivity and optical properties of this nanofluid decreased with time within 1 month.

ABSTRAK

Sumber kuasa yang boleh diperbaharui seperti tenaga solar adalah salah satu penyelesaian yang boleh digunakan untuk menyelesaikan masalah pemanasan global yang disebabkan oleh bahan api fosil yang menyumbang kepada pelepasan karbon dioksida yang tinggi. Tenaga solar boleh diperolehi secara semulajadi kerana berasal dari matahari yang boleh berubah menjadi tenaga haba yang boleh digunakan oleh manusia dengan menggunakan alat seperti pengumpul solar. Cecair konvensional pemindahan haba seperti air dan ethylene glycol dianggap sebagai penyerap solar yang lemah dan memberi kesan kepada kecekapan sistem termal suria. Penambahan nanopartikel ke dalam cecair ini boleh meningkatkan kekonduksian optik dan haba. Generasi baru cecair pemindahan haba ini dikenali sebagai nanofluids. Tujuan kajian ini adalah untuk menyiasat secara teori dan ujikaji ciri-ciri kekonduksian optik dan haba untuk titanium dioksida dan aluminium oksida nanofluids. Kedua-dua nanopartikel ini telah dipilih kerana sedia ada di pasaran dan model klasik Rayleigh Approach (RA) digunakan untuk menganalisis ciri-ciri optik kerana saiz nanopartikel ini adalah sangat kecil. Kesan surfaktan (Gum Arabic. Sodium dodecylbenzenesulfonate; polyvinylpyrrolidone), saiz (<13nm, <21nm dan <50nm), jumlah peratusan isipadu nanopartikel (0.002, 0.004, 0.006, 0.008 dan 0.010 vol. %) dan nilai pH (3, 5 dan 9) ke atas ciri-ciri optik nanofluids juga telah dilakukan. Kestabilan nanofluids diperhatikan melalui kaedah mengambil foto dan melalui pengukuran potensi zeta. Di samping itu, KD2-Pro penganalisis haba dan UV-Vis spectrophotometer masing-masing digunakan untuk mengukur kekonduksian haba dan ciri-ciri optik sampel. Dalam pengujian potensi zeta, keputusan menunjukkan surfaktant jenis SDBS mempamerkan nilai potensi zeta tertinggi berbanding dengan

surfaktant lain bagi kedua-dua jenis nanofluids. Manakala dari segi pemerhatian, didapati titanium dioxide nanofluids mempunyai ciri kestabilan yang rendah pada hampir semua keadaan pada 0.01% peratusan isipadu nanopartikel berbanding dengan aluminium oxide nanofluids. Hasil kajian berdasarkan teori klasik Rayleigh Approach juga menunjukkan bahawa saiz nanopartikel yang lebih besar (<50nm) dan nanopartikel yang lebih besar jumlah peratusan isipadu (0.010 vol. %) membawa kepada peningkatan extinction coefficient yang lebih tinggi untuk kedua-dua jenis nanofluids. Perbandingan pengukuran antara teori dan eksperimen telah berjaya dikira dalam kajian ini. Seterusnya, kekonduksian haba nanofluids diukur pada jenis zarah, surfaktan dan nilai pH cecair asas dan nilai dibandingkan dengan model Maxwell. Semua jenis nanofluids menunjukkan kekonduksian haba yang lebih baik berbanding dengan air suling. Titanium dioksida memberikan peningkatan kekonduksian haba yang paling tinggi (28.17%) berbanding aluminium oksida nanofluids. Akhir sekali, titanium dioksida dengan penambahan surfaktan gum Arabic (GA) telah dipilih untuk mengkaji kesan masa pada nanofluids kerana kestabilan, kekonduksian optik dan termal yang baik. Daripada kajian ini, kekonduksian termal dan sifat optik nanofluids ini menurun dengan masa dalam tempoh 1 bulan.

ACKNOWLEDGEMENTS

Alhamdulillah, I am most thankful to Allah S.W.T due to His blessings for giving me the opportunity to complete my research project. I am deeply indebted to my helpful supervisor, Dr. Leong Kin Yuen. His supervision, guidance and moral support have helped me to achieve the goals for this project.

I would also like to express my sincere gratitude to my co-supervisor, Dr. Ku Zarina binti Ku Ahmad for giving advices and valuable suggestions to improve my project. Her invaluable knowledge and constructive comments have helped me a lot in improving my research work. I am also grateful to Encik Zazlin bin Ismail from Universiti Pertahanan Nasional Malaysia and Ms Norhaya Abdur from University of Malaya for their technical support during the experiment.

In addition, I would like to thank my beloved husband, family, and my friends who have been instrumentally involved in my research. Thank you for your continuous moral support and kindness.

Last but not least, I am particularly grateful to the Ministry of Higher Education, Malaysia (MOHE) and Universiti Pertahanan Nasional Malaysia (UPNM) for giving me the financial support to conduct this research under the grant FRGS/2/2014/TK01/UPNM/03/1.

APPROVAL

I certify that an Examination Committee has met on 9th March 2017 to conduct the final examination of Athirah Najwa binti Zaaba on her master thesis entitled 'Investigation on the Optical and Thermal Conductivity Characteristics of Nanofluids'. The committee recommends that the student be awarded the **Master of Science (Mechanical Engineering)**.

Members of the Examination Committee were as follows.

Raja Nor Izawati binti Raja Othman, PhD

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Rosdzimin bin Abdul Rahman, PhD

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Rizalman bin Mamat, PhD

Professor Faculty of Mechanical Engineering Universiti Malaysia Pahang (External Examiner)

APPROVAL

This thesis was submitted to the Senate of University Pertahanan Nasional Malaysia and has been accepted as partial fulfilment of the requirement for the degree of **Master of Science (Mechanical Engineering)**. The members of the Supervisory Committee were as follows:

LEONG KIN YUEN, PhD, CEng, MIMechE

Faculty of Engineering

Universiti Pertahanan Nasional Malaysia

(Main Supervisor)

KU ZARINA KU AHMAD, PhD

Faculty of Engineering

Universiti Pertahanan Nasional Malaysia

(Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	: ATHIRAH NAJWA BINTI ZAABA
Date of birth	: 8 AUGUST 1991
Title	: INVESTIGATION ON THE OPTICAL AND THERMAL
	CONDUCTIVITY CHARACTERISTICS OF
	NANOFLUID

Academic session : 2015/2016

I declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
X OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follow

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE OF STUDENT

910808-04-5344

SIGNATURE OF MAIN SUPERVISOR

LEONG KIN YUEN

IC/PASSPORT NO. OF STUDENT

Date:

NAME OF SUPERVISOR

Date:

Note: *If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation stating the period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS AND SYMBOLS	XX

CHAPTER

INTRODUCTION	
Introduction	1
Background of the Problem	6
Objective of the Study	9
Scope of the Study	9
Scope of the Study (Experimental)	10
Scope of the Study (Theoretical)	11
Contribution of the Study	12
Outline of the Thesis	14
	 INTRODUCTION Introduction Background of the Problem Objective of the Study Scope of the Study Scope of the Study (Experimental) Scope of the Study (Theoretical) Contribution of the Study Outline of the Thesis

2

LITERATURE REVIEW

2.1	Introduction	15
2.2	Importance of Alternatives Renewable Energy	16
	Sources	
2.2.1	Solar Energy	19
2.3	Nanofluids	20
2.3.1	Preparation Of Nanofluid	22
2.3.2	Stability of Nanofluid	24
2.3.2.1	The Stability Measurement Techniques for	25
	Nanofluid	
2.3.2.2	Ways to Enhance the Stability of Nanofluid	31

2.4	Optical Properties of Nanofluid	34
2.4.1	Theoretical Model an Optical Properties of	35
	Nanofluid	
2.4.2	Experimental Finding on Optical Properties of	40
	Nanofluid	
2.5	Thermal Conductivity Characteristics Nanofluid	45
2.5.1	Theoretical Model of Thermal Conductivity of	46
	Nanofluid	
2.5.2	Experimental Finding of Thermal Conductivity	47
	of Nanofluid	
2.5.2.1	Effect of Volume Concentration	47
2.5.2.2	Effect of Temperature	48
2.5.2.3	Effect of Ph	50
2.5.2.4	Effect of Ultrasonication Time	50
2.5.2.5	Effect of Particle Size	52
2.5.2.6	Effect of Surfactant	53
2.6	Solar Collector	56
2.7	Application Nanofluid in Solar Collector	60
2.8	Conclusion	66

3

METHODOLOGY

3.1	Introduction	67
3.2	Materials and Preparation of Nanofluids	69
3.2.1	Nanoparticles and Base Fluid	69
3.2.2	Preparation of Nanofluid	70
3.3	Stability Measurement for Nanofluid Suspension	74
3.3.1	Observation Methods	75
3.3.2	Zeta Potential Measurement	75
3.4	Optical Properties Measurement	76
3.4.1	Experimental Measurement of Optical	76
	Properties	
3.4.2	Theoretical Calculation of Optical Properties	78
3.5	Thermal Conductivity	80

3.5.1	Experimental Finding on Thermal Conductivity	81
	of Nanofluid	
3.5.2	Theoretical Finding on Thermal Conductivity	83
	Of Nanofluid	
3.6	Summary	83

RESULTS AND DISCUSSIONS

4

4.1	Introduction	86
4.2	Stability	86
4.2.1	Zeta Potential Method	87
4.2.2	Observation (Photograph Capturing Method)	92
4.3	Optical Properties	103
4.3.1	Theoretical Calculation Using Rayleigh	103
	Approach (RA)	
4.3.2	Experimental Result of Optical Properties of	107
	Nanofluid	
4.3.2.1	Effect of Type and Size of Nanoparticles	108
4.3.2.2	Effect of Volume Percentages	110
4.3.2.3	Effect of Surfactant	114
4.3.2.4	Effect of Ph	120
4.3.3	Comparison of Extinction Coefficient Between	124
	Experimental and Theoretical	
4.4	Thermal Conductivity	126
4.4.1	Accuracy Validation of KD2-Pro Analyzer	126
4.4.2	Thermal Conductivity Characteristics of	126
	Aluminium Oxide and Titanium Dioxide Based	
	Nanofluid	
4.4.3	Comparison of Experimental Result with	130
	Theoretical Model	
4.5	Effect of Elapse Time on Optical Properties and	131
	Thermal Conductivity of Nanofluid	

CONCLUSION AND RECOMMENDATIONS

5

5.1	Introduction	134
5.2	Conclusion	134
5.2.1	Stability of Titanium Dioxide and Aluminium	134
	Oxide Based Nanofluid	
5.2.2	Optical Properties of Titanium Dioxide and	136
	Aluminium Oxide Based Nanofluid	
5.2.3	Thermal Conductivity of Titanium Dioxide	136
	and Aluminium Oxide based nanofluid	
5.3	Recommendations	137
	REFERENCES	139
	APPENDIX A: MATLAB SCRIPT	149
	APPENDIX B: EQUIPMENT	150
	SPECIFICATIONS	

APPENDIX C: LIST OF PUBLICATIONS	153
BIODATA OF STUDENT	154

LIST OF TABLES

TABLE NO.	DESCRIPTION	PAGE
2.1	Average value of solar radiation in Malaysia throughout the year	20
2.2	Summary of synthesis techniques of nanofluids	22
2.3	Stability of suspension at various range of zeta potential	28
2.4	Methods to enhance stability of nanofluids	33
2.5	Summary of study on optical properties of nanofluid	44
2.6	Thermal conductivity enhancement of the grapheme oxide nanofluids in various concentration and temperature	48
2.7	Sonication time in minutes for the considered alumina-water nanofluid mixtures	51
2.8	Summary of literature on factor affecting thermal conductivity conducted by researchers	55
2.9	Application of nanofluid operated in solar collector	63
3.1	Properties of titanium dioxide (Sigma Aldrich)	69
3.2	Properties of aluminium oxide (<13nm) and (<50nm) (Sigma Aldrich)	69
3.3	Complex refractive index of water, aluminium oxide and titanium dioxide	79
3.4	Specification and capability of the KS-1 needle sensor	81

LIST OF FIGURES

FIGURE NO.	DESCRIPTION	PAGE
1.1	Schematic of solar thermal conversion	3
1.2	Schematic of Solar Radiation Spectrum	7
2.1	Selection of renewable energy sources for Malaysian	18
2.2	Two-step preparation method	24
2.3	Zeta potential of alumina nanofluid against pH value	27
2.4	SEM of alumina nanoparticles	
2.5	Schematic of a direct absorption solar collector	
2.6	Flat plate solar collectors	57
2.7	Schematic of an evacuated tube collector	58
2.8	Parabolic solar collector	60
2.9	Percentage of size reduction for solar collector by applying different nanofluids	
3.1	Flow chart of the study	68
3.2	Digital weight balance	71
3.3	Mettler Toledo (Digital pH meter)	72
3.4	MR-Hei Tech Magnetic Stirrer and EKT-Hei Contact Thermometer	73
3.5	Ultrasonicator (QSONICA Q700) apparatus set up	73
3.6	Malvern Zetasizer Nano ZS	76
3.7	UV-VIS Spectrophotometer (UV-1800 Shimadzu)	77
3.8	KD2Pro Thermal Properties Analyzer	83

4.1	Zeta potential of titanium dioxide nanofluids at various condition	87
4.2	Zeta potential of aluminium oxide (<13nm) nanofluids at various conditions	89
4.3	Zeta potential of aluminium oxide (<50nm) based nanofluids at various conditions	90
4.4	Condition of nanofluids without surfactant	93
4.5	The condition of nanofluids with the addition of SDBS surfactant	94
4.6	The condition of nanofluid with the addition of GA surfactant	96
4.7	The condition of nanofluid with the addition of PVP surfactant	97
4.8	The condition of nanofluid with base fluid of pH 3	99
4.9	The condition of nanofluid with base fluid of pH 5	101
4.10	The condition of nanofluid with base fluid of pH 9	102
4.11	Extinction coefficient for titanium dioxide (<21nm) water based nanofluid of different volume percentage.	104
4.12	Extinction coefficient for titanium dioxide (0.01 vol. %) water based nanofluid of different size nanoparticles.	105
4.13	Extinction coefficient for aluminium oxide nanofluid Al_2O_3 (<13nm) water based nanofluid of different volume percentage	106

- 4.14 Extinction coefficient for aluminium oxide water 107 based nanofluid (0.01 vol. %) of different sizes nanoparticles
- 4.15 Transmittance characteristics for titanium dioxide 108 and aluminium oxide (0.01 vol. %) water based nanofluid
- 4.16 Extinction coefficient characteristics for titanium 109 dioxide and aluminium oxide
- 4.17 Transmittance characteristics for titanium dioxide 110 water based nanofluid of different particle volume percentages.
- 4.18 Transmittance characteristics for aluminium oxide 111 (<13nm) water based nanofluid of different particle volume percentages.
- 4.19 Transmittance characteristics for aluminium oxide 111 (<50nm) water based nanofluid of different particle volume percentages.
- 4.20 Extinction coefficient characteristics for titanium 112 dioxide water based nanofluid of different particle volume percentages.
- 4.21 Extinction coefficient characteristics for aluminium 113 oxide (<13nm) based water nanofluid of different particle volume percentages.
- 4.22 Extinction coefficient characteristics for aluminium 114 oxide (<50nm) water based nanofluid of different particle volume percentages.
- 4.23 Effect of surfactant on transmittance characteristics 115 for titanium dioxide based water nanofluid

4.24	Effect of surfactant on transmittance characteristics for aluminium oxide (<13nm) water based nanofluid	115
4.25	Effect of surfactant on transmittance characteristics for aluminium oxide (<50nm) water based nanofluid	116
4.26	Effect of surfactant on the extinction coefficient for titanium dioxide water based nanofluids.	117
4.27	Effect of surfactant on the extinction coefficient for aluminium oxide (<13nm) water based nanofluids	118
4.28	Effect of surfactant on the extinction coefficient for aluminium oxide (<50nm) water based nanofluids	119
4.29	Effect of pH on transmittance characteristics for titanium dioxide water based nanofluid	120
4.30	Effect of pH on transmittance characteristics for aluminium oxide (<13nm) water based nanofluid	120
4.31	Effect of pH on transmittance characteristics for Aluminium Oxide (<50nm) Water Based Nanofluid	121
4.32	Effect of pH on extinction coefficient for titanium dioxide water based nanofluid	122
4.33	Effect of pH on extinction coefficient for aluminium oxide (<13nm) water based nanofluid	123
4.34	Effect of pH on extinction coefficient for aluminium oxide (<50nm) water based nanofluid	123
4.35	Theoretical and experimental values of the extinction coefficient of titanium dioxide (<21nm) water based nanofluid at 0.01 % volume percentages.	124
4.36	Theoretical and experimental values of the extinction coefficient of aluminium oxide nanofluid (<13nm) at 0.01 % volume percentages.	125

xviii

- 4.37 Thermal conductivity characteristics of titanium 127 dioxide and aluminium oxide water based nanofluids at 0.01 vol. % of nanoparticles.
- 4.38 The effect of surfactants on thermal conductivity 128 characteristic of titanium dioxide and aluminium oxide water based nanofluid at 0.01 vol. % of nanoparticles.
- 4.39 The effect of pH on thermal conductivity 129 characteristics of titanium dioxide and aluminium oxide nanofluids at 0.01 vol. % of nanoparticles
- 4.40 Comparison of experimental and theoretical value of 130 thermal conductivity of titanium dioxide and aluminium oxide water based nanofluid at 0.01 vol.
 % of nanoparticles
- 4.41 Effect on the extinction coefficient of titanium 132 dioxide nanofluid added with GA surfactant for 1 month at 0.01 vol. % nanoparticles
- 4.42 Effect of thermal conductivity of titanium dioxide 133 nanofluid at 0.01 vol. % nanoparticles added with GA surfactant for 1 month

LIST OF ABBREVIATIONS AND SYMBOLS

Ag	-	Silver
Al_2O_3	-	Aluminium Oxide
CNT	-	Carbon Nanotube
Cu	-	Copper
CuO	-	Copper Oxide
D	-	Diameter of Particles
DW	-	Distilled Water
DAC	-	Direct Absorption Collector
DASC	-	Direct Absorption Solar Collector
DDA	-	Discrete Dipole Approximation
EG	-	Ethylene Glycol
Fe	-	Iron
Fe_3O_4	-	Iron (III) Oxide
GA	-	Gum Arabic
Ι	-	Intensity of Light
I _O	-	Intensity of Incident Light
IEP	-	Isoelectric Point
IR	-	Infrared Region
m	-	Complex Refractive Index
MWCNT	-	Multi-walled Carbon Nanotubes
PVD	-	Physical Vapor Deposition
PVP	-	Polyvinylpyrrolidone
QCA	-	Quasi Crystalline
Q_{abs}	-	Absorption Efficiency

Q_{ext}	-	Extinction Efficiency
Q_{scat}	-	Scattering Efficiency
RA	-	Rayleigh Approach
SEM	-	Scanning Electron Microscopy
SDS	-	Sodium Dodecyl Sulphate
SDBS	-	Sodium dodecylbenzenesulfonate
Si0 ₂	-	Silicon Oxide
SWCNHs	-	Single-Wall Carbon Nanohorns
SWCNT	-	Single-Wall Carbon Nanotubes
TEM	-	Transmission Electron Microscopy
Ti0 ₂	-	Titanium Dioxide
ZnO	-	Zinc Oxide
А	-	Particle Size Parameter
λ	-	Wavelength
Σ	-	Coefficient
k	-	Complex Component of Refractive Index
k _p	-	Thermal Conductivity of Nanoparticles
k _{bf}	-	Thermal Conductivity of Base Fluid
Ø	-	Volume Fraction
3	-	Dielectric Constant
n	-	Refractive Index
eff	-	Effective Medium
ρ	-	Density

CHAPTER 1

INTRODUCTION

1.1 Introduction

Fossil-based energy such as petroleum, natural gas and coal have become the world's primary energy resources for many decades. Fossil-based energy drives industrial development and the world's economy. The depletion of fossil-based energy as our primary energy resources is getting more serious due to the significant increase of world's energy consumption from year to year. Furthermore, fossil-based energy contributes to the global warming, air pollution and acid rain which force scientists to search for clean energy alternatives. The demand for energy has created increasing pressure on the search for alternatives energy resources and new ways to save and reduce energy usage.

There are a number of solutions being implemented to solve existing environmental problems including recycling of materials, reducing of carbon emissions from fossil fuels, and finding alternative energy solutions. Alternative energy resources can be in the form of renewable energy resources. A renewable energy resource is a natural energy resource that is constantly replenished. This means it has an infinite sustainability and will not run out. In Malaysia, there are a few types of renewable energy that can be used as alternative energy resources such as biomass, solar, wind and hydroelectric. These types of renewable energy are resources that are constantly and abundantly present and will never run out. These alternatives present a viable solution to problem of global warming caused by fossil fuels, which produced high carbon dioxide emissions. Therefore, the usage of clean renewable energy are amongst the possible approaches that can be used to address this problem.

Sustainable energy is one of the biggest challenges faced by society today. Thus, a renewable power source such as solar energy is one of the possible solutions that can be harnessed to address the current issue. Solar energy is one of the renewable sources of sustainable energy which does not affect the environment and has many advantages compared to other renewables energy resources. In addition, solar energy naturally available as it is derived from the sun that can be transformed into thermal energy. Using a device such as solar collector, the thermal energy can then be used either for industrial or domestic operation. Moreover, solar energy is one of the cleanest power sources as no pollutant is being released. Since, Malaysia is located within the equatorial which is hot and sunny throughout the year, solar energy is the most suitable energy resource to be generated in Malaysia. Figure 1.1 illustrates the schematic of solar thermal conversion.