SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE CO-DOPED WITH GADOLINIUM AND ALUMINIUM USING CO-SPUTTERING TECHNIQUE FOR P-N HETEROJUNCTION DIODE APPLICATION

NUR AMALIYANA BINTI RASHIP

DOCTOR OF PHILOSOPHY ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2023

SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE CO-DOPED WITH GADOLINIUM AND ALUMINIUM USING CO-SPUTTERING TECHNIQUE FOR P-N HETEROJUNCTION DIODE APPLICATION

NUR AMALIYANA BINTI RASHIP

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical and Electronic Engineering

ABSTRACT

Diluted magnetic semiconductors (DMS) are being extensively researched as a significant step toward the development of spintronic devices. The discovery of appropriate materials that exhibit ferromagnetic behavior at room temperature and high magnetism is critical for the realization of such devices. However, generating ferromagnetism in ZnO based DMS remains a major obstacle to the fabrication of spintronic devices operating above room temperature and the understanding on the origin of its ferromagnetism is still lacking. In this study, shallow donors of Aluminium (Al) was incorporated into Gadolinium (Gd) doped Zinc Oxide (ZnO) films to explore the possibility of developing a new DMS through co-sputtering technique deposited at room temperature. This study investigated the effect of sputtering parameters and the effect of dopant amount (Gd and Al) on the film characteristics. The findings reveal that 3 at% of (Gd, Al) co-doped ZnO exhibited good physical properties with enhanced magnetic behavior at room temperature as compared to the Gd-doped ZnO and undoped ZnO. X-ray diffraction (XRD) study confirmed the films are well crystalline indexed to the hexagonal wurtzite structure of ZnO with no secondary phases and further supported by energy-dispersive spectroscopy (EDS) analysis study that indicating the existence of Zn, O, Al and Gd elements in the prepared film. Homogeneous nanostructure with well-aligned structure as well as small grains observed field-emission scanning electron microscope (FESEM) and atomic force microscopy (AFM) correlates with the magnetic properties, which contributes to the improvement in saturation magnetization (M_s) and high coercivity (H_c). The optical transmittance obtained

above 90% in the visible region with band gap was found red-shifted by Al codoping. The incorporation of Al into Gd-doped ZnO demonstrated a free electron carrier concentration dependence, which increases considerably when the carrier concentration surpasses $\sim 5.3 \times 10^{26}$ m⁻³. The magnetic force microscopy (MFM) measurement proved the existence of room temperature ferromagnetism and spin polarization in 3 at% (Gd, Al) co-doped ZnO film as it exhibited smaller domain size with shorter magnetic correlation length L, larger phase shift $\Phi_{\rm rms}$ and highest value of δf_{rms} . These findings were further supported by the room temperature M-H curves of the 3 at% (Gd, Al) co-doped ZnO film with improvement of M_s and H_c by 37.9 % and 60.7 %, respectively from 3 at% Gd-doped ZnO film, which the film were induced by carrier-mediated ferromagnetism. Potential n-ZnO based DMS/p-Si heterojunction diode was also demonstrated with the use of (Gd, Al) co-doped ZnO film indicating lowest leakage current of 1.28×10^{-8} A and the ideality factor, n of 1.11 almost to ideal diode behavior of n=1 as compared to the p-Si/n-Gd-doped ZnO and p-Si/n-undoped ZnO heterojunction diodes. The obtained results conclude that (Gd, Al) co-doped ZnO films synthesized by co-sputtering technique have improved electrical and magnetic properties where the films indicate room temperature ferromagnetism with the origin of its magnetism were induced by carrier-mediated ferromagnetism, thus proving that this type of DMS is a promising material for potential spin-based electronic application.

ABSTRAK

Semikonduktor magnetik cair (DMS) sedang dikaji secara meluas sebagai langkah penting ke arah pembangunan peranti spintronik. Penemuan bahan yang mempamerkan tingkah laku feromagnetik pada suhu bilik dan kemagnetan yang tinggi adalah penting untuk merealisasikan peranti tersebut. Walau bagaimanapun, penjanaan feromagnetik dalam DMS berasaskan Zink Oksida (ZnO) kekal sebagai penghalang utama kepada fabrikasi peranti spintronik yang beroperasi di atas suhu bilik dan sifat feromagnetik masih kurang dikaji. Dalam kajian ini, penderma cetek Aluminium (Al) telah dimasukkan ke dalam filem ZnO berdop Gadolinium (Gd) untuk meneroka DMS baharu. Filem-filem tersebut dihasilkan dengan menggunakan kaedah percikan bersama yang dijalankan pada suhu bilik. Penyelidikan ini meneroka kesan daripada percikan parameter dan kesan jumlah dopan (Gd dan Al). Penemuan mendedahkan bahawa 3 at% daripada (Gd, Al) didop bersama ZnO menunjukkan peningkatan dalam sifat dan mempamerkan tingkah laku magnet pada suhu bilik. Kajian pembelauan sinar-X (XRD) mengesahkan filem itu diindekas kepada struktur wurzite heksagon ZnO tanpa fasa sekunder dan disokong oleh kajian analisis spektroskopi penyebaran tenaga (EDS) menunjukkan kewujudan unsur Zn, O, Al dan Gd dalam filem yang disediakan. Struktur nano yang sejajar serta butiran kecil daripada mikroskop elektron pengimbasan pancaran medan (FESEM) dan mikroskopi daya atom (AFM) berkorelasi dengan sifat magnetik, yang menyumbang kepada peningkatan dalam kemagnetan tepu (M_s) dan paksaan (H_c). Transmisi optik yang diperoleh melebihi 90% di kawasan UV oleh doping bersama Al. Penggabungan Al ke dalam ZnO berdop Gd menunjukkan pergantungan kepekatan pembawa elektron bebas, yang meningkat dengan ketara apabila kepekatan pembawa melebihi ~5.3x10²⁶ m⁻³. Pengukuran mikroskop daya magnet (MFM) membuktikan kewujudan feromagnetik pada suhu bilik dan polarisasi putaran dalam filem ZnO yang didop bersama 3 at% (Gd, Al) kerana ia mempamerkan saiz domain yang lebih kecil dengan panjang korelasi magnet yang lebih pendek L, anjakan fasa $\Phi_{\rm rms}$ yang lebih besar dan nilai tertinggi bagi δf_{rms} . Penemuan ini disokong lagi oleh lengkung M-H suhu bilik filem ZnO yang didop bersama 3 at% (Gd, Al) dengan peningkatan M_s dan nilai H_c iaitu 37.9 %, dan 60.7%, masing-masing daripada filen ZnO yang didop pada 3 at% Gd, yang mana filem itu didorong oleh pembawa feromagnetik pengantara. Kesan filem ZnO terdop feromagnetik (Gd, Al) telah ditunjukkan pada prestasi diod heterojunction ZnO/Si. Keputusan menunjukkan arus bocor yang rendah iaitu 1.28 x 10^{-8} A dan faktor idealiti, *n* sebanyak 1.11 hampir kepada kelakuan diod ideal n=1. Keputusan yang diperolehi menyimpulkan bahawa filem ZnO yang didopkan bersama (Gd, Al) dihasilkan dengan menggunakan kaedah percikan bersama telah bertambah baik dari segi sifat elektrik dan sifat magnet di mana filem itu menunjukkan ferromagnetik pada suhu bilik dengan asal kemagnetannya didorong oleh pembawa feromagnetik pengantara, oleh itu membuktikan bahawa filem jenis DMS ini berpotensi untuk aplikasi spintronik.

ACKNOWLEDGEMENTS

Alhamdulillah, all praise goes to Almighty Allah S.W.T, Most Gracious and Merciful, for granting me the strength and abilities to complete this PhD. For the success of my PhD study, I would like to express my sincere thanks to those who have contributed in so many different ways. First of all, I would like to express my gratitude to my supervisor, Assoc. Prof. Dr. Siti Nooraya Mohd Tawil for her supervision, support, patience, and continuous encouragement throughout my PhD study. This PhD study would have been impossible to finish without her help.

Special thanks to my co-supervisors, Prof. Nafarizal Nayan, Dr. Khadijah Ismail and technical staff in MiNT-SRC, Mrs. Faezahana, Mr. Nasrul, Mr. Azwadi, and to every member of MiNT-SRC for their unconditional help with sample fabrication and characterizations. My deepest gratitude to all my friends, Anis, Siti Ashraf, Zul, Afiqah, Izudin, Hidayah, Sawsan and Muliana for helping me during the laboratory sessions and experimental works.

I would like to acknowledge financial support from FRGS and UPNM. Most importantly, my hearty thanks to my husband, Mohd Daniel Ashraf and my sweet daughter, Atiya Sara, my parents, Raship Ab. Manas and Zaiton Nasir, parents inlaws, and my family members for their infinite love, patience, prayers and support, which keep me in going, and words would fail to express feeling of indebtedness to them. Last but not least, my sincere thanks to those who had been involved directly or indirectly contributed to the success of this study and helping me to complete my thesis. Thank you.

APPROVAL

The Examination Committee has met on 12 April 2023 to conduct the final examination of Nur Amaliyana Binti Raship on his degree thesis entitled Synthesis and characterization of ZnO co-doped with Gd and Al using co-sputtering technique for p-n heterojunction diode application.

The committee recommends that the student be awarded the Degree of Doctor of Philosophy in Electrical and Electronic Engineering.

Members of the Examination Committee were as follows.

Dr. Asnor Mzuan Bin Ishak Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Assoc. Prof. Dr. Muhamad Faiz Bin Md Din Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Dr. Ibrahim Bin Ahmad UNITEN R&D (URND) Universiti Tenaga Nasional (External Examiner)

Assoc. Prof. Ir. Ts. Dr. Rozana Aina Maulat Osman

Faculty of Electronic Engineering Technology Universiti Malaysia Perlis (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy in Electrical and Electronic Engineering. The members of the Supervisory Committee were as follows.

Assoc. Prof. Dr Siti Nooraya Binti Mohd Tawil

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Dr. Khadijah Binti Ismail

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Prof. Nafarizal Bin Nayan

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Nur Amaliyana Binti Raship
Date of birth	: 26 November 1992
Title	: Synthesis and characterization of zinc oxide co-doped with
	gadolinium and aluminum using co-sputtering technique for
	p-n heterojunction diode application

Academic session : 2019/2020

RESTRICTED

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the official Secret Act 1972)*

(Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

791006-12-5132

IC/Passport No.

....

SITI NOORAYA MOHD TAWIL

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

	TITLE	PAGE
ABSTRA	АСТ	ii
ABSTRA	AK	iv
ACKNO	WLEDGEMENTS	vi
APPRO	VAL	vii
APPRO	VAL	ix
DECLA	RATION OF THESIS	X
TABLE	OF CONTENTS	xi
LIST OI	FTABLES	xiv
LIST OI	F FIGURES	xvi
LIST OI	FABBREVIATIONS	xxi
LIST OI	FSYMBOLS	xxii
CHAPT	ER 1	1
INTR	ODUCTION	1
1.1	Introduction	1
1.2	Background of the study	2
1.3	Problem statement	6
1.4	Hypothesis	8
1.5	Objectives	8
1.6	Scopes	8
CHAPT	ER 2	10
LITE	RATURE REVIEW	10
2.1	Diluted Magnetic Semiconductor	10
2.2	Theory of Magnetism	11
2.3	Types of magnetism	13
	2.3.1 Diamagnetism	15
	2.3.2 Paramagnetism	15
	2.3.3 Ferromagnetism	15
	2.3.4 Antiferromagnetism	16
2.4	2.3.5 Ferrimagnetism	17
2.4	General properties of Zinc oxide $2.4.1$ (mustal atmosphere of ZinC)	1 / 1 0
2.5	2.4.1 Crystal structure of ZIIO Para earth elements	10
2.5	2.5.1 Characteristics of gadolinium	20
	2.5.1 Characteristics of gadoninum 2.5.2 Rare-earth doned ZnO	21
2.6	Co-doning in ZnO based diluted magnetic semiconductor	24
2.0	Mechanism operative in ZnO based diluted magnetic semiconductor	26
	2.7.1 Direct exchange mechanism	27
	2.7.2 Indirect exchange mechanism	27
	2.7.2.1 Carrier mediated exchange	27
	2.7.2.2 Double exchange mechanism	28
	2.7.2.3 Super exchange mechanism	29
	2.7.2.4 Bound magnetic polaron mechanism	30
2.8	Deposition method of ZnO based diluted magnetic semiconductor	31
	2.8.1 Sputtering	33

	2.8.2 Other deposition methods	37
	2.8.2.1 Chemical vapor deposition method	37
	2.8.2.2 Chemical solution based method	37
2.9	Potential application of ZnO based diluted magnetic semiconductor	4(
CHAPT	ER 3	4 4
RESE	ARCH METHODOLOGY	4 4
3.1	Introduction	45
3.2	Substrates preparation	48
3.3	Growth of ZnO based diluted magnetic semiconductor films	49
	3.3.1 Deposition of undoped ZnO film	51
	3.3.2 Deposition of Gd-doped ZnO film	52
	3.3.2.1 Effect of deposition time	54
	3.3.2.2 Effect of distance target to substrate	55
	3.3.2.3 Effect of substrate rotation speed	56
	3.3.2.4 Effect of Gd doping concentration	57
	3.3.3 Deposition of (Gd, Al) co-doped ZnO films	58
3.4	Characterization of ZnO based diluted magnetic semiconductor films	6
	3.4.1 Structural properties	61
	3.4.2 Morphological properties	64
	3.4.3 Element composition	65
	3.4.4 Film thickness	60
	3.4.5 Topology properties	67
	3.4.6 Optical properties	00
	3.4.7 Electrical properties	71
	2.4.0 Current voltage (LV) manufactor for notantial device	13
	5.4.9 Current-voltage (1-V) measurement for potential device	1.
CHAPT	ER 4 wth of cd doped zno films using co sputtering	78
METI	HOD	75
	Effect of Deposition Time	79
7.1	4.1.1. Structural properties	70
	4.1.1 Structural properties 4.1.2 Surface morphology	81
	4.1.2 Surface tonography	83
	4 1 4 Ontical properties	85
42	Effect of Distance between Target to Substrate	87
	4 2 1 Structural properties	88
	4.2.2 Surface morphology	91
	4.2.3 Surface topology	92
	4.2.4 Optical properties	94
4.3	Effect of Substrate Rotation Speed	96
	4.3.1 Structural properties	97
	4.3.2 Surface morphology	99
	4.3.3 Surface topography	100
	4.3.4 Optical properties	102
4.4	Summary	105
CHAPT	ER 5	106
GROV	WTH OF GD-DOPED ZNO FILMS WITH DIFFERENT GD	
CON	FNTRATION AND THE INCORPORATION OF SHALLOW	

DONC	DR	106
5.1	Effect of Gd concentration	106
	5.1.1 Structural properties	107
	5.1.2 Surface morphology	109
	5.1.3 Surface topography	112
	5.1.4 Optical properties	115
	5.1.5 Electrical properties	118
	5.1.6 Magnetic properties	119
5.2	Effect of Al co-doping	127
	5.2.1 Structural properties	127
	5.2.2 Surface morphology	130
	5.2.3 Optical properties	132
	5.2.4 Electrical properties	134
	5.2.5 Magnetic properties	136
5.3	Summary	141
CHAPT	ER 6	142
GROV	WTH OF (GD, AL) CO-DOPED ZNO WITH DIFFERENT AL	
CONC	CENTRATION AND ITS ORIGIN OF FERROMAGENTISM	142
6.1	Effect of different Al concentration	142
	6.1.1 Structural properties	143
	6.1.2 Surface morphology	145
	6.1.3 Surface topography	149
	6.1.4 Optical properties	151
	6.1.5 Electrical properties	156
	6.1.6 Magnetic properties	157
	6.1.7 Origin of room temperature ferromagnetism of shallow d	onor
	Al incorporated Gd-doped ZnO films	162
6.2	Potential application of ZnO based DMS for p-n heterojunction	
	diode	166
	6.2.1 Fabrication of p-Si/n-ZnO-based DMS/Al structure	166
	6.2.2 Electrical characteristics of undoped ZnO, Gd-doped ZnO	and
	(Gd, Al) co-doped ZnO films for potential p-n heterojunc	tion
	diode	168
6.3	Summary	170
CHAPT	ER 7	172
CONC	CLUSION	172
7.1	Summary	172
7.2	Future works	175
REFERI	ENCES	176
BIODAT	TA OF STUDENT	193
LIST OF	FPUBLICATIONS	194
LIST OF	FAWARD	197

LIST OF TABLES

TABLE N	O. TITLE	PAGE
Table 2.1	Basic characteristics of ZnO	18
Table 2.2	Rare-earth elements' electronic configuration	21
Table 2.3	Physical characteristics of Gd	22
Table 2.4	Comparison physical, electrical, and magnetic properties of Gd-do ZnO films	ped 23
Table 2.5	Comparison magnetic properties of co-doping in ZnO based DMS	26
Table 2.6	Deposition methods for growth (Gd, Al) co-doped ZnO film	31
Table 2.7	Synthesis condition of ZnO based DMS using sputtering	36
Table 2.8	Electrical properties of p-n heterojunction diodes on ZnO	43
Table 4.1	List of parameters for the effects of deposition time	79
Table 4.2	Structural parameters of Gd-doped ZnO films at various deposition time	n 81
Table 4.3	Surface roughness and grain size of Gd-doped ZnO films at differe deposition time	ent 85
Table 4.4	List of parameters for the effects of distance target to substrate	88
Table 4.5	Structural parameters of Gd-doped ZnO films at various target to substrate distance	90
Table 4.6	Surface roughness and grain size of Gd-doped ZnO films at target substrate distance	to 94
Table 4.7	List of parameters for the effects of substrate rotation speed	97
Table 4.8	Structural parameters of Gd-doped ZnO films at substrate rotation speed	99
Table 4.9	Surface roughness and grain size of Gd-doped ZnO films at variou substrate rotation speed	s 102
Table 5.1	List of parameters for the effects of distance target to substrate	106
Table 5.2	Structural parameters of Gd-doped ZnO films at different Gd concentration	109
Table 5.3	Composition elements of undoped ZnO and various Gd concentrations of Gd-doped ZnO films	111
Table 5.4	Surface roughness and grain size of undoped ZnO and Gd-doped ZnO films at various Gd concentrations	114
Table 5.5	The electrical parameters of undoped ZnO and Gd-doped ZnO at various Gd concentration	119

Table 5.6	The magnetic properties of undoped ZnO and Gd-doped ZnO films at various Gd concentrations	124
Table 5.7	The magnetic properties of undoped ZnO and Gd-doped ZnO films at various Gd concentrations	125
Table 5.8	List of parameters for the effects of shallow donor Al co-doping	127
Table 5.9	Structural parameters of undoped ZnO, Gd-doped ZnO, and (Gd, Al) co-doped ZnO films	129
Table 5.10	Atomic percentage (at%) of Al, Gd, Zn and O for undoped ZnO, Gd-doped ZnO, and (Gd, Al) co-doped ZnO films	132
Table 5.11	The electrical values of undoped ZnO, Gd-doped ZnO, and (Gd, Al) co-doped ZnO films	136
Table 5.12	The magnetic properties of undoped ZnO and Gd-doped ZnO and (Gd, Al) co-doped ZnO by MFM measurement	138
Table 5.13	The magnetic properties of undoped ZnO, Gd-doped ZnO films, and (Gd, Al) co-doped ZnO films	139
Table 6.1	List of parameters for the effects of Al doping concentrations	142
Table 6.2	Structural parameters of (Gd, Al) co-doped ZnO films at different Al concentrations	145
Table 6.3	Surface roughness and grain size of (Gd, Al) co-doped ZnO films at various Al concentrations	150
Table 6.4	The electrical values of (Gd, Al) co-doped ZnO films at various Al concentrations	157
Table 6.5	The magnetic properties of (Gd, Al) co-doped ZnO films at various Al concentrations	160
Table 6.6	The magnetic properties of (Gd, Al) co-doped ZnO films at various Al concentrations	162
Table 6.7	List of parameters for the p-Si/n-ZnO based DMS diode	166
Table 6.8	List of parameters for the Al electrical contact	167
Table 6.9	Electrical characteristics of p-si/n-ZnO based DMS heterojunction derived from I-V measurements	170

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
Figure 2.1	Synthesis of diluted magnetic semiconductor	10
Figure 2.2	Illustration of spin magnetic moment	11
Figure 2.3	Classes of magnetism with respective M-H curves, (a) diamagnetis (b) paramagnetism, (c) ferromagnetism, (d) antiferromagnetism, and (e) ferrimagnetism	sm, 14
Figure 2.4	M-H curve for ferromagnetic material	16
Figure 2.5	Crystal structure of ZnO	19
Figure 2.6	Rare-earth element components in the periodic table	20
Figure 2.7	Illustration of ferromagnetism by the mediation through present of free carriers	28
Figure 2.8	Illustration of double exchange mecahnism	29
Figure 2.9	Illustration of super exchange mechanism	29
Figure 2.10	Illustration of bound magnetic polaron	30
Figure 2.11	Schematic diagram of the sputtering mechanism	34
Figure 2.12	Summary of application of ZnO based DMS	41
Figure 2.13	The concept of spintronics	42
Figure 3.1	Flow chart of the project methodology	44
Figure 3.2	The flow of optimization of Gd-doped ZnO films and (Gd, Al) co- doped ZnO films	46
Figure 3.3	Flow chart of the deposition process and characterization of the fil	ms 47
Figure 3.4	The process of substrate preparation	48
Figure 3.5	Sputtering system for deposition of films	50
Figure 3.6	The ignition of the plasma inside sputtering chamber	51
Figure 3.7	Fabrication of Gd-doped ZnO film	53
Figure 3.8	The deposition process of Gd-doped ZnO films at different deposition times	54
Figure 3.9	The deposition process of Gd-doped ZnO films at different distance target to substrate	e 55
Figure 3.10	The deposition process of Gd-doped ZnO films at different substration speed	ite 56
Figure 3.11	The deposition process of Gd-doped ZnO films at various Gd concentrations	57

Figure 3.12	Experimental setup of three sources of target in the sputtering chamber	59
Figure 3.13	The deposition process of (Gd, Al) co-doped ZnO films at various Al concentrations	60
Figure 3.14	X-ray diffractometer of PANalytical X-Pert ³ Powder	62
Figure 3.15	Schematic diagram of Bragg's diffraction	62
Figure 3.16	Schematic diagram of principle FESEM	64
Figure 3.17	FESEM machine	65
Figure 3.18	Energy dispersive x-ray spectroscopy	66
Figure 3.19	Ilustration of EDS principle	66
Figure 3.20	Surface profiler	67
Figure 3.21	Atomic force microscope machine	68
Figure 3.22	Illustration of AFM working principle	68
Figure 3.23	Ultraviolet-visible spectroscopy	69
Figure 3.24	Photoluminescence spectroscopy	70
Figure 3.25	Schematic diagram of principle photoluminescence	71
Figure 3.26	Hall effect system	72
Figure 3.27	Experimental setup for Van der Pauw measurement	72
Figure 3.28	Magnetic force microscope	73
Figure 3.29	Schematic process for MFM image of ZnO based DMS films. The appearance of magnetization in films, as well as in the probing tip, is represented by the magnetic poles: North (N) - up and South (S) - down	74
Figure 3.30	(a) The illustration and (b) the image of vibrating sample magnetometer	75
Figure 3.31	2-point probe machine	76
Figure 4.1	XRD patterns of Gd-doped ZnO films at various deposition time	80
Figure 4.2	FESEM images of Gd-doped ZnO films at different deposition time at (a) 15 minutes, (b) 30 minutes, (c) 45 minutes, and (d) 60 minutes	82
Figure 4.3	Thickness of Gd-doped ZnO films at different deposition time	83
Figure 4.4	3D AFM images of Gd-doped ZnO films at different deposition time (a) 15 minutes, (b) 30 minutes, (c) 45 minutes, and (d) 60 minutes	84
Figure 4.5	Transmittance spectra of Gd-doped ZnO films at different deposition time	86
Figure 4.6	Extrapolation liner plot of band gap energy from Tauc's plot equation of Gd-doped ZnO films at different deposition time (a) 15 minutes, (b) 30 minutes, (c) 45 minutes, and (d) 60 minutes	ו 87

Figure 4.7	XRD patterns of Gd-doped ZnO films at various distance of target to substrate) 89
Figure 4.8	FESEM images of Gd-doped ZnO films at distance substrate to targe (a) 12.0 cm, (b) 13.5 cm, and (c) 15.0 cm	et 91
Figure 4.9	Schematic diagram of sputtering phenomena at (a) longer distance of target to substrate, and (b) shorter distance of target to substrate	f 92
Figure 4.10	The 3D AFM of Gd-doped ZnO films at various targets to substrate distance (a) 12.0 cm, (b) 13.5 cm, and (c) 15.0 cm	93
Figure 4.11	The transmittance spectra of Gd-doped ZnO films at different target to substrate distance	95
Figure 4.12	Extrapolation linear plot of band gap energy from Tauc's plot equation of Gd-doped ZnO films at different target to substrate distance (a) 12.0 cm, (b) 13.5 cm, and (c) 15.0 cm	96
Figure 4.13	XRD patterns of Gd-doped ZnO films at various substrate rotation speeds	98
Figure 4.14	FESEM images of Gd-doped ZnO films at substrate rotation speed (a) 1 rpm, (b) 3 rpm, (c) 5 rpm, (d) 7 rpm and (c) 9 rpm	100
Figure 4.15	The 3D AFM of Gd-doped ZnO films at various substrate rotation speed (a) 1 rpm, (b) 3 rpm, (c) 5 rpm, (d) 7 rpm and (c) 9 rpm	101
Figure 4.16	The transmittance spectra of Gd-doped ZnO films at different substrate rotation speed	103
Figure 4.17	Extrapolation linear plot of band gap energy from Tauc's plot equation of Gd-doped ZnO films at different substrate rotation speed (a) 1 rpm, (b) 3 rpm, (c) 5 rpm, (d) 7 rpm, and (e) 9 rpm	104
Figure 5.1	XRD patterns of undoped ZnO and Gd-doped ZnO films at different Gd concentration	107
Figure 5.2	FESEM images of (a) Undoped ZnO and Gd-doped ZnO films at Gd concentration (b) 1 at%, (c) 3 at%, (d) 5 at%, (d) 7 at%	110
Figure 5.3	EDS spectrum of (a) Undoped ZnO and Gd-doped ZnO films with different amount of Gd (b) 1 at%, (c) 3 at%, (d) 5 at%, (e) 7 at%	112
Figure 5.4	3D AFM images of (a) Undoped ZnO and Gd-doped ZnO films at Gd concentration (b) 1 at%, (c) 3 at%, (d) 5 at%, (d) 7 at%	114
Figure 5.5	The transmittance spectra of Gd-doped ZnO films at different Gd concentration	116
Figure 5.6	Extrapolation linear plot of band gap energy from Tauc's plot equation of (a) Undoped ZnO and Gd-doped ZnO films at different Gd concentration (b) 1 at%, (c) 3 at%, (d) 5 at%, and (d) 7 at%	117
Figure 5.7	The variation of hall mobility, carrier concentration, resistivity, and conductivity as a function of undoped ZnO and Gd-doped ZnO films at various Gd concentrations	119
Figure 5.8	2D AFM images (left) and 2D MFM images (right) of (a) undoped	

xviii

	ZnO, (b) 1 at%, (c) 3 at%, (d) 5 at%, and (e) 7 at% Gd-doped ZnO films	121
Figure 5.9	Root mean square values, δf_{rms} , of MFM images of undoped ZnO and Gd-doped ZnO films	122
Figure 5.10	Correlation of root mean square of phase shift, $\Phi_{\rm rms}$ and magnetic correlation length, <i>L</i> , upon various Gd concentrations	123
Figure 5.11	M-H curves of undoped ZnO and Gd-doped ZnO films at various Gd concentrations at (a) Magnetic field range from -8 kOe to +8 kOe and (b) Magnetic field range from -1 kOe to +1 kOe	126
Figure 5.12	(a) X-ray diffraction (XRD) pattern, (b) Diffraction (002) peak of undoped ZnO, Gd-doped ZnO, and (Gd, Al) co-doped ZnO films	129
Figure 5.13	FESEM images of (a) undoped ZnO, (b) Gd-doped ZnO, and (c) (Gd, Al) co-doped ZnO films	130
Figure 5.14	EDS spectrum of (a) undoped ZnO, (b) Gd-doped ZnO, and (c) (Gd, Al) co-doped ZnO films	131
Figure 5.15	The transmittance spectra of undoped ZnO, Gd-doped ZnO, and (Gd, Al) co-doped ZnO films	132
Figure 5.16	Extrapolation linear plot of band gap energy from Tauc's plot equation of (a) Undoped ZnO, (b) Gd-doped ZnO, and (c) (Gd, Al) co-doped ZnO films	134
Figure 5.17	The variation of hall mobility, carrier concentration, resistivity and conductivity as a function of undoped ZnO, Gd-doped ZnO, and (Gd, Al) co-doped ZnO films	135
Figure 5.18	2D AFM images (left) and 2D MFM images (right) of (a) Undoped ZnO, (b) Gd-doped ZnO, and (c) (Gd, Al) co-doped ZnO films	137
Figure 5.19	M-H curves of undoped ZnO, Gd-doped ZnO and (Gd, Al) co-doped ZnO films at (a) Magnetic field range from -8 kOe to $+8$ kOe and (b) Magnetic field range from -1 kOe to $+1$ kOe	d 140
Figure 6.1	XRD patterns of (Gd, Al) co-doped ZnO films at different Al concentrations	143
Figure 6.2	FESEM images of (Gd, Al) co-doped ZnO films at different Al concentrations at (a) 0 at% Al, (b) 1 at% Al, (c) 2 at% Al, (d) 3 at% Al, (d) 4 at% Al	146
Figure 6.3	EDS spectrum of the (Gd, Al) co-doped ZnO at (a) 0 at% Al, (b) 1 at%Al, (c) 2 at% Al, (d) 3 at% Al, (d) 4 at% Al	147
Figure 6.4	(a) Mapping images of element distribution in (Gd, Al) co-doped ZnO and element mapping images of the (Gd, Al) co-doped ZnO at (b) 0 at% Al, (c) 1 at% Al, (d) 2 at% Al, (e) 3 at% Al, (f) 4 at% Al	148
Figure 6.5	3D AFM images of (Gd, Al) co-doped ZnO films at different Al concentrations at (a) 0 at% Al, (b) 1 at% Al, (c) 2 at% Al, (d) 3 at% Al, and (e) 4 at% Al	150

Figure 6.6	The transmittance spectra of (Gd, Al) co-doped ZnO films at different Al concentration	151
Figure 6.7	Schematic diagram of optical transition of electron from valence band to conduction band	152
Figure 6.8	Extrapolation linear plot of band gap energy from Tauc's plot equation of (Gd, Al) co-doped ZnO films at different Al concentrations at (a) 0at% Al, (b) 1 at% Al, (c) 2 at% Al, (d) 3 at% Al, (d) 4 at% Al	153
Figure 6.9	 (a) Photoluminescence spectra of (Gd, Al) co-doped ZnO films at different amount of Al concentrations and deconvolution of photoluminescence spectra of (Gd, Al) co-doped ZnO films at (b) 0 at% Al, (c) 1 at% Al, (d) 2 at% Al, (e) 3 at% Al 	155
Figure 6.10	The variation of hall mobility, carrier concentration, and resistivity (Gd, Al) co-doped ZnO films at various Al concentrations	157
Figure 6.11	2D AFM images (left) and 2D MFM images (right) of (Gd, Al) co- doped ZnO films at different Al concentrations at (a) 0 at% Al, (b) 1 at% Al, (c) 2 at% Al, (d) 3 at% Al, (d) 4 at% Al	159
Figure 6.12	M-H curves of (Gd, Al) co-doped ZnO films at various Al concentrations at (a) Magnetic field range from -8 kOe to +8 kOe and (b) Magnetic field range from -1 kOe to +1 kOe	161
Figure 6.13	The relationship between saturation magnetization (M_s) and carrier concentration of (Gd, Al) co-doped ZnO $$	164
Figure 6.14	Illustration of of the (a) Formation of bound magnetic polarons (BMP) around the defects for Gd-doped ZnO and (b) Delocalized charge carrier-mediated ferromagnetic coupling between distant Gd^{3+} spins in addition to the BMPs for (Gd, Al) co-doped ZnO	165
Figure 6.15	The p-si/n- ZnO based DMS /Al structure	167
Figure 6.16	I-V measurements of p-si/n-ZnO based DMS heterojunction	170

LIST OF ABBREVIATIONS

AFM	-	Atomic force microscopy
BMP	-	Bound magnetic polaron
CBD	-	Chemical bath deposition
CVD	-	Chemical vapor deposition
DMS	-	Diluted magnetic semiconductor
DC	-	Direct current
EDS	-	Energy dispersive X-ray spectroscopy
FESEM	-	Field emission scanning electron microscope
FWHM	-	Full width at half maximum
GMR	-	Giant magneto resistance
hcp	-	Hexagonal close packed
HIPPIMS	-	High power impulse magnetron sputtering
ICSD	-	Inorganic crystal structure database
LED	-	Light emitting diode
MBE	-	Molecular beam epitaxy
MFM	-	Magnetic force microscopy
PL	-	Photoluminescence
PLD	-	Pulse laser deposition
PVD	-	Physical vapour deposition
RF	-	Radio frequency
RE	-	Rare-earth
RKYY	-	Ruderman, Kittel, Kasuya and Yoshida
RT	-	Room temperature
ТМ	-	Transition Metal
TMP	-	Turbo molecular pump
SQUID	-	Super-conducting quantum interference device
UV-Vis	-	Ultraviolet-visible spectroscopy
VSM	-	Vibrating sample magnetometer
W-H	-	Williamson hall
XAS	-	X-ray absorption spectroscopy
XRD	-	X-ray diffraction

LIST OF SYMBOLS

Al	-	Aluminum
Ar	-	Argon
Å	-	Armstrong
At%	-	Atomic percentage
f_{0}	-	Average MFM signal
μ_B	-	Bohr magneton
Φ_{B}	-	Barrier height
k	-	Boltzman constant
CdSe	-	Cadmium selenide
CdTe	-	Cadmium telluride
Ce	-	Cerium
q	-	Charge
$CdCr_2S_4$	-	Chromium spinels
Co	-	Cobalt
H _c	-	Coercivity
J	-	Coulombic
D	-	Crystallite size
С	-	Curie constant
T _c	-	Curie temperature
Ι	-	Current
°C	-	Degree Celsius
τ	-	Distance of electron travels around a nucleus
Dy	-	Dysprosium
А	-	Effective contact area
A*	-	Effective Richardson constant
e	-	Electron charge
m _e	-	Electron mass
eV	-	Energy
Eg	-	Energy band gap
Eu	-	Europium

Er	-	Erbium
EuO	-	Europium chalcogenides
GaAs	-	Gallium arsenide
GaMnAs	-	Gallium manganese arsenide
GaN	-	Gallium nitrate
Gd	-	Gadolinium
Ge	-	Germanium
Но	-	Holmium
n	-	Ideality factor
M_i	-	Incident atom mass
In	-	Indium
InAs	-	Indium arsenide
Fe	-	Iron
Κ	-	Kelvin
La	-	Lanthanum
Lu	-	Lutetium
М	-	Magnetization
L	-	Magnetic correlation length
Н	-	Magnetic field
m	-	Magnetic moment
χ	-	Magnetic susceptibility
Mn	-	Manganese
MnAs	-	Manganese arsenide
Nm	-	Nanometer
T_N	-	Néel temperature
Nd	-	Neodymium
Ni	-	Nickel
N_2	-	Nitrogen
Vo	-	Oxygen vacancies
Pr	-	Praseodymium
Pm	-	Promethium
%	-	Percentage
μ_o	-	Permeability

f_{i}	-	Pixel of MFM signal
р	-	Pressure
h	-	Planck constant
M _r	-	Remanent magnetization
Sm	-	Samarium
Io	-	Saturation current
M_{s}	-	Saturation magnetization
Si	-	Silicon
Ag	-	Silver
M _t	-	Target atom mass
Т	-	Temperature
Tb	-	Terbium
Sn	-	Tin
Ν	-	Total pixels number of MFM
Tm	-	Thulium
V	-	Vanadium
V	-	Velocity
v	-	Volume
λ	-	Wavelength
Yb	-	Ytterbium
Zn _i	-	Zinc interstitials
ZnSe	-	Zinc selenide
ZnO	-	Zinc oxide
V_{Zn}	-	Zinc vacancies

image