FLUID-STRUCTURE INTERACTION SIMULATION OF UNEVEN GEOMETRIES SUBJECTED TO BLAST LOADING

ARIF SHAFIQ BIN MOHAMED SOHAIMI

Thesis Submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science (Mechanical Engineering)

February 2017

ABSTRACT

Recently, improvised explosive devices have been widely used by terrorist or militant movements around the world. The blast wave propagation of an explosive detonation can cause destructive damage on the armored vehicles and also fatalities to the vehicle occupants. Field blast testing is very expensive and time consuming but by using computational based numerical simulations it is possible to virtually predict these blast wave propagation patterns. Computational Fluid Dynamics (CFD) is one of the effective tools to perform Fluid-Structure Interaction (FSI) analysis of free field air blast and against structure. This study presents two different blast analyses; free field air blast using CFD and blast loading subjected to the armored vehicle that focus on blast critical pressure point, front and hull sections using FSI method. Photogrammetry techniques were used to develop a three dimensional solid model of armored vehicle sections (Front and hull) for the blast wave analysis. A high explosive of 72 g of plastic explosive (PE4) blast peak overpressure data from ConWep program has been patched at the specific fluid domain. The computed results for CFD and FSI were found to be in agreement with the experimental data. It was also found that the developed CFD model can be used to predict the blast wave propagation impact to armored vehicles.

ii

ABSTRAK

Sejak kebelakangan ini, alat peranti letupan telah digunakan secara meluas oleh pengganas atau gerakan militan di seluruh dunia. Perambatan gelombang letupan daripada bahan letupan boleh menyebabkan kerosakan yang teruk kepada kenderaan perisai dan juga kematian kepada pemandu dan penumpang kenderaan. Ujian letupan lapangan adalah sangat mahal dan memakan masa yang panjang tetapi dengan menggunakan pengiraan simulasi berangka hampir boleh meramalkan perambatan gelombang letupan ini. Computational Fluid Dynamics (CFD) adalah salah satu alat yang berkesan untuk melaksanakan Fluid-Structure Interaction (FSI) untuk membuat analisis letupan lapangan di udara dan juga terhadap struktur. Kajian ini membentangkan dua analisis letupan yang berbeza; letupan lapangan di udara menggunakan CFD dan letupan terhadap kenderaan perisai yang memberi tumpuan kepada titik letupan tekanan kritikal, bahagian depan dan bawah kenderaan perisai menggunakan kaedah FSI. Teknik fotogrametri telah digunakan untuk membangunkan model CAD 3D bahagian kenderaan perisai (depan dan bawah) untuk analisis gelombang letupan. Data untuk puncak tekanan letupan yang kuat seberat 72 g 'plastic explosive' (PE4) dari program ConWep telah ditampal di domain cecair tersebut. Keputusan yang disimulasi menggunakan CFD dan FSI didapati hampir menyamai dengan data eksperimen. Ia telah juga mendapati bahawa model CFD boleh digunakan untuk meramalkan kesan perambatan gelombang letupan terhadap kenderaan perisai.

ACKNOWLEDGEMENT

I would like to express my sincerest gratitude to my main supervisor, Professor Dr. Risby bin Mohd Sohaimi and my co-supervisor, Ir. Saiddi Ali Firdaus bin Mohd Ishak for their guidance and providing valuable comments and suggestion during my research. I gratefully acknowledge to Kementerian Pengajian Tinggi (KPT) and Universiti Pertahanan Nasional Malaysia (UPNM) for providing the financial support throughout my study.

Furthermore, I would like to take this opportunity to thank my colleagues especially lab mate in thermodynamic laboratory of UPNM, Khalis Suhaimi, Muhammad Fahmi, Mohd Noor Hafizi, Asrul Syaharani and Muhammad Azhar for their outstanding collaboration for being a very good sharing partner during my research. I also want to show my appreciation to Mr Tan Kean Lee, animator consultant who was helping me in developing the 3D CAD model of armored vehicle.

Finally, my deepest grateful and thanks go to my parents and my family, especially my wife and my daughter who always support and motivate me during hardship. Including continuous prays for my prosperity.

APPROVAL

I certify that an Examination Committee has met on 13th April 2017 to conduct the final examination of Arif Shafiq Bin Mohamed Sohaimi on his degree thesis entitled 'Fluid-Structure Interaction Simulation of Uneven Geometries Subjected to Blast Loading'. The committee recommends that the student be awarded the degree of Master of Science (Mechanical Engineering).

Members of Examination Committee were as follows.

Mohammad Faizal Bin Abdullah

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairperson)

Lt. Kol Khairul Hasni Bin Kamarudin

Associate Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Ahmad Humaizi Bin Hilmi, PhD

School of Manufacturing Engineering Universiti Malaysia Perlis (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science (Mechanical Engineering). The members of the Supervisory Committee were as follows.

Risby Bin Mohd Sohaimi, PhD, CEng, MIMechE Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Saiddi Ali Firdaus Bin Mohd Ishak, PEng, MIEM Ir. Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA DECLARATION OF THESIS

Author's full name	:	Arif Shafiq Bin Mohamed Sohaimi
Date of birth	:	24 June 1989
Title	:	Fluid-Structure Interaction Simulation Of
		Uneven Geometries Subjected To Blast Loading
Academic session	:	Dec 2014 – Dec 2016

I declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)
RESTRICTED	(Contains restricted information as specified by the
OPEN ACCESS	organization where research was done) I agree that my thesis to be published as online open access

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE OF STUDENT (ARIF SHAFIQ B MOHAMED SOHAIMI)

SIGNATURE OF SUPERVISOR

IC/PASSPORT NO.

Date:

NAME OF SUPERVISOR

Date:

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
APPROVAL	v
DECLARATION	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATION	xvi

INTRODUCTION

1.1	Background	1
1.2	Blast Protection in Armored Vehicles	5
1.3	Problem Statement	8
1.4	Research Objectives	9
1.5	Scope and Limitation of Study	9
1.6	Outline of the Thesis Structure	10

LITERATURE REVIEW

2.1	Introduction	11
2.2	Explosion	12
2.2.	1 Explosive	14
2.3	Blast Wave	18
2.4	Blast Wave Related Studies	21
2.4.	1 TNT Equivalent	21

2.	4.2 Scaling Law	23
2.	4.3 Analytical Methods	25
2.	4.4 Experimental Methods	27
	2.4.4.1 Blast Testing	27
2.	4.5 Numerical Methods	31
	2.4.5.1 Computational Fluid Dynamics (CFD)	32
	2.4.5.2 Fluid-Structure Interaction (FSI)	35
2.5	Summary	37

METHODOLOGY

3.1 Overview	38
3.2 Photogrammetry of Armored Vehicle	40
3.2.1 Coded Target Detection Method (Marking)	41
3.2.2 PhotoModeler Software	43
3.2.2.1 Camera Calibration	43
3.2.2.2 Code Based Photogrammetry	46
3.2.3 CATIA V5R20	48
3.2.3.1 Generating 3D Solid Model	48
3.3 Development of CFD Model Air Blast	50
3.3.1 Experimental Setup	51
3.3.2 CFD Numerical Approach	52
3.3.2.1 Convergence Test	54
3.4 Development of FSI Model for Blast Testing	55
3.4.1. Fluid-Structure Interaction (FSI) Approach	56
3.4.1.1 Simulated Boundary Conditions and Meshing Settings	56

3.4.1.2 Fluent/Mechanical APDL Settings	58
3.5 Armored Vehicle Scale Down Front and Hull Section Test Setup	60
3.5.1. Small Scale Armored Vehicle Fabrication Process	61
3.5.2. Instrument Setup	62
3.5.2.1 DAQ System	62
3.5.2.2 Air Blast Probe	63
3.5.2.3 Incident Pressure Sensor	64
3.5.2.4 Sensor Mounting and Location	64
3.5.3. Blast Testing	66
3.5.3.1 Explosive Charge	67
3.6 Summary	67

RESULT AND DISCUSSION

4.1	Introduction	68
4.2	Convergence Test Results	68
4.2	2.1. Computational Fluid Dynamics Convergence Test	68
4.2	2.2. Fluid-Structure Interaction Convergence Test	69
4.3	CFD Subjected to Free Field Air Blast	70
4.4	FSI Subjected to Armored Vehicle Structures	77
4.4	.1. Pressure	77
4	.4.1.1 Front 900 mm	77
4	.4.1.2 Front 500 mm	80
4	.4.1.3 Hull 900 mm	83
4	.4.1.4 Hull 500 mm	86
4.4	.2. Deformation	90

4.4.2.1 Front 100 mm	90
4.4.2.2 Hull 100 mm	92
4.5 Summary	94
5. CONCLUSION	
5.1 General Conclusion	95
5.2 Future Recommendation	98
REFERENCES	99
APPENDIX A	108
APPENDIX B	109
APPENDIX C	110
APPENDIX D	111
APPENDIX E	112
VITA	113
LIST OF PUBLICATIONS	114
LISTS OF EXHIBITION ATTENDED	115
LISTS OF CONFERENCE ATTENDED	116

LIST OF TABLES

TABLE TITLE	PAGE
Table 1.1: Protection levels for occupants of armored vehicles for grenade mine threats (STANAG 4569)	and blast 6
Table 2.1: Examples of high profile terrorist incidents using IEDs	16
Table 2.2: Free-air equivalent weights (Lo, 2006)	22
Table 2.3: Examples of blast testing conducted by other researchers	28
Table 2.4: Investigation of blast loading using CFD	33
Table 2.5: Investigation of blast loading using FSI	35
Table 3.1: Information of 2D free field air blast model meshes	54
Table 3.2: Information of 3D FSI model meshes	55
Table 3.3: ASTM A36 mild steel mechanical properties (AZoM, 2012)	60
Table 3.4: Blast test sequences	66
Table 4.1: Differences of peak overpressure	76
Table 4.2: Percentage difference of peak overpressure for front and hull see	ction 89
Table 4.3: Percentage difference of deformation for front and hull section	93

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 1.1: Factors of explosion	2
Figure 1.2: Schematic of free air blast test setup (Umar, 2013)	3
Figure 1.3: Front and underbelly sections of SIBMAS AFSV	7
Figure 2.1: Schematic of energetic materials classifications	15
Figure 2.2: A general pressure profile, caused by the propagation of an explo- blast wave (Arrigoni <i>et al.</i> , 2011)	osion 19
Figure 2.3: Hopkinson-Cranz blast wave scaling (Chun, 2004)	24
Figure 2.4: Blast wave propagation using numerical methods (Institute of Hi Performance Computing, 2016)	igh 31
Figure 2.5: Blast wave propagation using CFD method (Yang et al., 2013)	34
Figure 2.6: Peak overpressure graph (Cong, 2014)	34
Figure 2.7: Blast wave propagation using FSI method (Saleh & Edwards, 20	15) 36
Figure 2.8: FSI vs experiment graph (Chun, 2005)	36
Figure 3.1: Flowchart diagram	39
Figure 3.2: Photogrammetry flowchart diagram	40
Figure 3.3: Photograph of the armored vehicle marked with RAD targets	42
Figure 3.4: Example of coded targer adhered to armored vehicle (RAD code	d) 42
Figure 3.5: Reference point dots	42
Figure 3.6: Armored vehicle marked with dots	43
Figure 3.7: Multi-Sheet Calibration (MSC)	44
Figure 3.8: Four different position for each angle	44

Figure 3.9: Photography process	46
Figure 3.10: Code Based Photogrammetry	47
Figure 3.11: Main body 3D outline	47
Figure 3.12: Generate a plane and extruding	48
Figure 3.13: 3D solid model of armored vehicle	49
Figure 3.14: (a) Hull CAD Model; (b) Front CAD Model	50
Figure 3.15: Actual test setup using 1 kg PE4	51
Figure 3.16: (a) Model of geometry in the ANSYS Fluent; (b) Patched method	53
Figure 3.17: 2D free field air blast mesh: (a) 550 mm; (b) 350 mm; (c) 150 mm	54
Figure 3.18: 3D FSI mesh: (a) 15 mm; (b) 10 mm; (c) 5 mm	55
Figure 3.19: Schematic diagram of armored vehicle and boundary condition definition (a) Front; (b) Hull	57
Figure 3.20: Mesh constructed: (a) Hull; (b) Front section	58
Figure 3.21: Patch method	59
Figure 3.22: Sketching and grinding process	61
Figure 3.23: Welding process	61
Figure 3.24: Small scale of armored vehicle (Front and Hull section)	62
Figure 3.25: DAQ NI SCXI-1000DC	63
Figure 3.26: Air blast probe 137B21A	63
Figure 3.27: Incident pressure sensor 113B22-32325	64
Figure 3.28: Incident pressure sensor mounting	65
Figure 3.29: Sensor location	65
Figure 3.30: Experiment setup	66
Figure 3.31: 72 g PE4	67

Figure 4.1: Pressure-time graph for CFD convergent testing	69
Figure 4.2: Pressure-time graph for FSI convergent testing	70
Figure 4.3: Standoff 1.5 m (a) Experiment; (b) Simulation	72
Figure 4.4: Explosion deflagration zone	72
Figure 4.5: Standoff 3 m (a) Experiment; (b) Simulation	73
Figure 4.6: Standoff 4.5 m (a) Experiment; (b) Simulation	74
Figure 4.7: Pressure contour of free air blast	75
Figure 4.8: Pressure vs time (Front 900 mm) (a) Experiment; (b) Simulation	78
Figure 4.9: Pressure contour (Front 900 mm)	79
Figure 4.10: Pressure pathlines (Front 900 mm)	80
Figure 4.11: Pressure vs time (Front 500 mm) (a) Experiment; (b) Simulation	81
Figure 4.12: Pressure contour (Front 500 mm)	82
Figure 4.13: Pressure pathlines (Front 500 mm)	83
Figure 4.14: Pressure vs time (Hull 900 mm) (a) Experiment; (b) Simulation	84
Figure 4.15: Pressure contour (Hull 900 mm)	85
Figure 4.16: Pressure pathlines (Hull 900 mm)	86
Figure 4.17: Pressure vs time (Hull 500 mm) (a) Experiment; (b) Simulation	87
Figure 4.18: Pressure contour (Hull 500 mm)	88
Figure 4.19: Pressure pathlines (Hull 500 mm)	88
Figure 4.20: FSI pressure contour (Front 100 mm)	91
Figure 4.21: Front 100 mm	91
Figure 4.22: FSI pressure contour (Hull 100 mm)	92
Figure 4.23: Hull 100 mm	93

LIST OF ABREVIATIONS

0	Degree
2D	Two-dimensional
3D	Three-dimensional
AV	Anti-vehicular
AT	Anti-tank
ANFO	Ammonium nitrate/fuel oil
ASTM	American Society for Testing and Materials
С	Carbon
CAD	Computer Aided Design
cm	Centimeter
CFD	Computational Fluid Dynamics
СО	Cobalt
DAQ	Data Acquisition
DNT	2,4-Dinitrotoluene
FEA	Finite Element Analysis
FVM	Finite Volume Method
FSI	Fluid-Structure Interaction
FC	Field Calibration
FE	Finite Element
g	Gram
Gpa	Giga Pascal
H ₂ O	Water
HMX	Nitroamine High Explosive

IED	Improvised Explosive Device	
IOCL	Indian Oil Corporation Ltd	
ISO	International Organization for Standardization	
kg	Kilogram	
kPa	Kilo Pascal	
К	Kelvin	
MPa	Mega Pascal	
GPa	Giga Pascal	
m/s	Meter per Second	
mm	Millimeter	
m	Meter	
mV	Millivolt	
MRAP	Mine Resistant and Ambush Protected	
MSC	Multi Sheet Calibration	
N ₂	Nitrogen	
NO ₂	Nitrogen Dioxide	
NATO	North Atlantic Treaty Organization	
NI	National Instruments	
Pa	Pascal	
PETN	Pentaerythritol Tetranitrate	
psi	Pounds per Square Inch	
RAD	Ringed Automatically Detection	
RHA	Rolled Homogeneous Armour	
Roe-FDS	Roe Flux Differencing Scheme	
S	Seconds	

t	Time
TNT	2,4,6-Trinitrotoluene
UDF	User Defined Function
VTF	Virtual Test Facility

CHAPTER 1

INTRODUCTION

1.1 Background

Explosions do not only occur in the battlefield, but also occur in the chemical industry or in the urban environment. Petrochemical related accidents, nuclear explosions and terrorist attacks are some of the blast situations that have been widely reported (Dyer *et al.*, 2012). The threat of terrorism is a high-priority national security and law enforcement concern in the United States. Terrorism itself has been an age-old threat to the public health and security of many populations throughout the world. Since the 1980s, terrorist attacks against the United States have led to legislative, regulatory, organizational and programmatic actions associated with comprehensive and ambitious expectations (Keim & Deitchman, 2016). Statistics showed that there has been an increase in the frequency of bombing incidents by terrorist organisations in recent years. For example, there was a more than 300 % rise in bombing incidents globally between 2004 and 2012, and a 50 % increase in suicide bombings, with an accompanying increase in mortality of 30 %. The current trend for increase in the frequency of terrorist attacks may can be attributed to bombings in the Middle East.

The attack on the World Trade Centre towers in 1993 is an example of a terrorist attack conducted in a mass populated area (Lange, 2013).

An explosion phenomena can be defined as the quick release of large amounts of energy within a limited space. It is comprised of the decomposition of energetic materials to produce gas, heat and rapid expansion of matter. An explosion can be described as any chemical compound, mixture or device, the primary or common purpose of which is to function by an explosion. Oxygen, ignition source and combustible substances are the factors of explosion (as shown in Figure 1.1).

Figure 1.1: Factors of explosion.

A detonation process possesses specific physical characteristics. It is initiated by the heat accompanying shock compression; it liberates sufficient energy, before any expansion occurs, in order to sustain the blast or shock wave. The shock wave propagates into the unreacted material at supersonic speed, typically 1500 - 9000 m/s. The by-product which is the blast wave directly increases the pressure value above the ambient atmospheric pressure. Soon, the pressure behind the shock front may drop below the ambient pressure. The term blast wave is used to define an explosion or detonation-induced pressure-based wave propagating within the air surrounding the explosive charge, while the term shock wave represents the stress-based wave within the protective structure generated as a result of the interaction of the incident blast wave with the target structure (Grujicic *et al.*, 2013).

Blast waves have been studied for more than half a century and researchers have been increasingly interested in the study of blast waves. They have conducted experiments and simulations in attempting to analyse the physics of the blast phenomena. Blast wave study can be classified into three methods; (i) Empirical, (ii) Analytical and (iii) Numerical methods. The empirical method can be defined as a research based on experiment investigation, which is commonly using a pressure probe that is used to measure the blast wave (Figure 1.2). Then, analytical method can be calculated based from the shock parameters for an explosion to get the maximum blast peak-overpressure using Naumenko & Petrovskyi, (1956) & Sadovskiy, (2004) equations. These equations established similar formulae on the basis theory of models that were derived from several experimental results.

Figure 1.2: Schematic of free air blast test setup (Umar et al., 2015).

The numerical method is based on a simulation model using a computer code. Computational fluid dynamics (CFD) is one of the methods to predict the blast wave propagation apart from the finite element analysis (FEA) approach. CFD are implemented with the Euler scheme, which provides the qualitative and quantitative analysis of blast wave propagation. The fundamental theories of CFD problems are the Navier-Stokes equations, which include Navier-Stokes equation of motion supplemented by mass conservation equation and energy equation (Batchelor, 2000). CFD can be used to generalize and support experimental results in simulating blast waves (Alpman, 2012). The computational programs originally used to carry out these numerical studies were wave propagation codes capable of analysing the highly nonlinear and time-dependent nature of explosion, i.e., simulating the blast wave propagation (Doolittle, 1995).

When the Lagrange scheme is implemented with the CFD code, the solutions are commonly known as Fluid-structure Interaction (FSI). FSI can be defined as a multiphysics coupling between fluid dynamics and structural mechanics laws. This circumstance is characterized by interactions (oscillatory or stable) between a deformable structure and surrounding or internal fluid flow (Hou *et al.*, 2012). When a fluid flow is engaged in confrontation against a structure, strains and stresses are applied on the structure and the forces can lead to deformations. High pressure or high velocity of the fluid flow, will lead to large deformations, depending on the material properties of the structure.

1.2 Blast Protection in Armored Vehicles

Since their creation in the mid-19th century, antipersonnel mines have become a fundamental aspect of military strategy, revolutionizing infantry tactics. The blast mine is the most common. Hidden underground, the blast mine is activated when the victim or vehicle move and activates the trigger (Boutros-Ghali, 1994). Anti-vehicular (AV) landmine and improvised explosive device (IED) explosions may cause catastrophic structural failures of military vehicles and induce injuries or fatalities of the crew. When an AV explosive charge is detonated under a vehicle, a shock wave with intensive energy is generated. It is transmitted to the vehicular floor in microseconds and then results in large acceleration and deflection of the floor plate, which in turn applies high loads to the lower extremities of the occupants to induce injury (NATO, 2007). All in all, at the vehicle design stage particular attention should be paid to the vehicle hull construction (its shape and armour), its suspension, seat construction and seat fixing method in the crew compartment, as well as mobility both on- and off-road.

NATO standardization is the development and implementation of concepts, doctrines and procedures to achieve and maintain the required levels of compatibility, interchangeability or commonality needed to achieve interoperability (NATO, 2011). This study is focused on STANAG 4569 – Protection Levels for Occupants of Armored Vehicles (as shown in Table 1.1). The table shows the protection levels for occupants of armored vehicles for grenade and blast mine threats:

Table 1.1 Protection levels for occupants of armored vehicles for grenade and

Level Grenade and B		Grenade and B	last Mine threat	
4	4b	Mine Explosion under belly	10 kg (explosive mass) Blast AT	
	4 a	Mine Explosion pressure	Mine	
		activated under any wheel or		
		track location		
3	3b	Mine Explosion under belly	8 kg (explosive mass) Blast AT	
	3a	Mine Explosion pressure	Mine	
		activated under any wheel or		
		track location		
2	2b	Mine Explosion under belly	6 kg (explosive mass) Blast AT	
	2a	Mine Explosion pressure	Mine	
		activated under any wheel or		
		track location		
		Hand grenades, unexploded artille	ery fragmenting submunitions, and	
	1	other small anti-personnel explosive devices detonated anywhere under		
		the vehicle		

blast mine threats (STANAG 4569).

Currently, Malaysia has several types of armored vehicles that are used for military operations for example; SIBMAS AFSV, Condor APC and the latest model of armored vehicles, which are AV8 Gempita and Lipan Bara. AV8 Gempita is a new generation of 8 x 8 Armored Wheeled Vehicle and the hull consists of a composite aluminium and steel armor that provides protection for the crew and infantry against firing of small arms. AV8 Gempita was added with armour mounted at the front and to the sides of the hull. The parts of the armored vehicle most exposed to the effects of a pressure wave from explosive elements are the front, undercarriage, wheels and the inner wheel arch (Slawinski & Dziewulski, 2016). Figure 1.3 shows the front and underbelly sections of SIBMAS AFSV. These sections are considered the most high pressure critical points when an explosion occurs. There is no technical data for blast mine threats being exposed due to the confidentiality of Malaysian government military assets especially, SIBMAS AFSV.

Figure 1.3: Front and underbelly sections of SIBMAS AFSV.