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ABSTRACT 

 

Polyurethane (PU) is a promising dielectric elastomer (DE), however increasing its 

dielectric constant is essential for PU to become a viable DE. Incorporating graphene 

oxide (GO) as a filler has the potential but may increase dielectric loss and conductivity. 

Zirconium silicate (ZrSiO4) is an alternative, but excessive use potentially decreasing the 

actuation strain. This study delves into the impact of polydopamine (PDA) modification 

on GO and ZrSiO4, and their influence on the dielectric and mechanical properties of PU 

composites. Nanoparticles were modified with PDA, then mixed with PU matrix at 

various weight percentage through melt-mixing process. The modified nanoparticles (GO-

PDA and ZrSiO4-PDA) significantly enhances the dielectric constant of PU composites 

compared to unmodified nanoparticles. PU with GO-PDA shows reduction in dielectric 

loss and conductivity with 70% and 50% decrement compared to unmodified GO due to 

insulative barriers in GO-PDA. However, ZrSiO4 modification results in lattice 

contraction, leading to an increase in dielectric loss (up to 100%) and conductivity (up to 

354%) for composites with ZrSiO4-PDA. A hybrid composite incorporating 2.5 wt.% of 

GO-PDA and 30 wt.% of ZrSiO4 was synthesized, demonstrating elevated dielectric 

constant up to 25, albeit with elevated losses (up to 0.48) and conductivity (up to 5 X 10-

7 S/m), which may stem from a reaction between PDA and ZrSiO4, affecting the insulating 

properties of GO-PDA and causing lattice contraction of ZrSiO4. This study 

comprehensively explores the effects of PDA modification on GO and ZrSiO4 in PU-based 

elastomers, shedding light on electrical, mechanical properties, and morphology. It 

informs potential strategies for developing DE for generators or actuators. 
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ABSTRAK 

Poliuretana (PU) adalah sejenis elastomer dielektrik (DE) yang berpontensi, namun 

peningkatan pemalar dielektriknya adalah penting bagi PU untuk menjadi DE yang boleh 

diaplikasikan. Penyertaan grafin oksida (GO) sebagai pengisi mempunyai potensi tetapi 

boleh meningkatkan kehilangan dielektrik dan kekonduksian. Zirkonium Silikat (ZrSiO4) 

merupakan alternatif, tetapi penggunaan berlebihan boleh mengurangkan regangan 

aktuasi. Kajian ini mengkaji kesan modifikasi (PDA) terhadap GO dan ZrSiO4, serta 

kesannya terhadap sifat dielektrik dan mekanikal komposit PU. Nanopartikel dimodifikasi 

dengan PDA, kemudian dicampur dengan matriks PU pada peratus berat yang berbeza 

melalui proses pencampuran lebur. Nanopartikel yang diubahsuai (GO-PDA dan ZrSiO4-

PDA) secara signifikan meningkatkan pemalar dielektrik komposit PU berbanding 

nanopartikel yang tanpa modifikasi. PU dengan GO-PDA menunjukkan penurunan 

kehilangan dielektrik dan kekonduksian sebanyak 70% dan 50% berbanding GO yang 

tanpa modifikasi disebabkan penghalang insulatif dalam GO-PDA. Walau bagaimanapun, 

pengubahsuaian ZrSiO4 mengakibatkan penyusutan kekisi, menyebabkan peningkatan 

kehilangan dieletrik (hingga 100%) dan kekonduksian (hingga 354%) bagi komposit 

dengan ZrSiO4-PDA. Satu komposit hibrid yang mengandungi 2.5 wt.% GO-PDA dan 30 

wt.% ZrSiO4 telah disintesis, dengan pemalar dielektrik yang tinggi sehingga 25, namun 

disertai kehilangan yang tinggi (hingga 0.48) dan kekonduksian (hingga 5 X 10-7 S/m), 

yang mungkin disebabkan oleh tindak balas antara PDA dan ZrSiO4 yang mempengaruhi 

sifat insulatif GO-PDA dan menyebabkan penyusutan kesisi ZrSiO4. Kajian ini secara 

menyeluruh meneroka kesan pengubahsuaian PDA terhadap GO dan ZrSiO4 dalam 

elastomer PU, memberikan penerangan tentang sifat-sifat elektrik, mekanikal, dan 
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morfologi. Ia memberikan pandangan terhadap strategi yang berpotensi ke arah 

membangunkan DE sebagai generator atau aktuator.  
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.0 Introduction 

Dielectric elastomer (DE) has been known since the early days of electricity when James 

Maxwell identified the impact of dielectric materials known as Maxwell stress in his work 

on the foundation of electromagnetic theory [1]. DE first came to the attention of 

academics in the 1990s, when various research articles and findings for prospective uses 

were published. This might be due to DEs' unique ability to transform electrical energy 

into mechanical energy and vice versa, making them adaptable enough to be used in a 

variety of sectors. There are various suitable polymers that can act as a dielectric elastomer 

such as acrylic [2]–[5], silicone rubber [6]–[8], poly (vinylidene fluoride) (PVDF) [9], 

[10] natural rubber [11], and polyurethane. 

Polyurethane has emerged as a potential material to be used as a dielectric 

elastomer due to its high dielectric constant and huge force outputs, allowing them to be 

actuated at lower electric fields. However, improvement is still required to make 

polyurethane a viable dielectric elastomer. Increasing the dielectric permittivity of 
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polyurethane elastomer leads to a rise in capacitance, which aids in the development of 

better DE. A common method is to create elastomer composites by introducing filler into 

the system. Conductive filler such as metal or carbon filler and high dielectric filler such 

as ceramic is proven to be able to increase the polymer dielectric permittivity but at a cost. 

In this study, graphene oxide (GO) and zirconium silicate (ZrSiO4) were 

incorporated into the PU matrix to study the effect of those fillers on the dielectric and 

mechanical properties of the elastomer. These nanofillers were also modified with 

polydopamine (PDA) and incorporated with PU matrix to study the effect of the 

modification towards the elastomer dielectric and mechanical attributes. Last but not least, 

a hybrid composite of GO and ZrSiO4 was made based on the characterization result of 

the single-filler composite. Dielectric characterization was done through dielectric 

analyzer and mechanical characterization was done using tensile test. Other 

characterization such as morphology, spectral and elemental were also been carried out 

using FESEM, FTIR and EDX analysis, respectively.  

1.1 Problem Statement 

Polyurethane (PU) possesses several favorable properties, including a high dielectric 

permittivity, low dielectric loss, and impressive stretchability. However, its suitability as 

a DE is limited by certain drawbacks, such as a high elastic modulus and low breakdown 

strength. The high elastic modulus hampers electromechanical sensitivity, thereby 

impacting the DE's actuation capabilities. Additionally, the low breakdown strength 

restricts the maximum voltage that can be applied to the elastomer before it conducts 

electricity. One potential solution to address these challenges is to enhance the elastomer's 

dielectric permittivity. By increasing the dielectric permittivity, the elastomer's actuation 
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functionality can be achieved with minimal voltage, effectively overcoming the limitation 

of low breakdown strength. Furthermore, elevating the dielectric permittivity of the 

material augments its capacitive properties, allowing it to store more energy and perform 

exceptionally well as a generator. 

Graphene oxide (GO) is an excellent filler for this endeavor. It has ultra-high 

electrical conductivity and a large specific surface area thanks to the unique two-

dimensional (2-D) structure of GO, which aids in boosting the elastomer's interfacial 

polarization and dielectric permittivity [12]–[14]. However, the addition of conductive 

fillers such as graphene increases the dielectric loss and conductivity of the polymer, 

resulting in decreased breakdown strength and system efficiency [15]–[17].  

Due to its high dielectric constant, zirconium silicate (ZrSiO4) is also a viable 

option filler for DE composite [18]. Aside from that, its insulative qualities demonstrated 

low leakage current densities and maximum capacitance densities, which aids in the 

development of DE with high dielectric permittivity and low loss [19]. However, massive 

loadings of ceramic filler have been shown to significantly increase the dielectric 

permittivity of the polymer. High filler loadings improve the elastic modulus of the 

elastomer, resulting in a stiff and low actuation strain elastomer [20]–[22].   

1.2 Objective 

The purpose of this study is to achieve several objectives as follows: 

1. To characterize the effect of the PDA-modification towards GO and ZrSiO4 

nanoparticle’s morphology, elemental and composition.  


