MATERIAL CHARACTERIZATION OF POLYURETHANE DIELECTRIC ELASTOMER

MUHAMMAD NAIEM NAQIUDDIN BIN ZAHARIN

MASTER OF SCIENCE (MECHANICAL ENGINEERING)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2023

MATERIAL CHARACTERIZATION OF POLYURETHANE DIELECTRIC ELASTOMER

MUHAMMAD NAIEM NAQIUDDIN BIN ZAHARIN

Thesis submitted to Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfillment of the requirements for the Master of Science (Mechanical Engineering)

ABSTRACT

Polyurethane (PU) is a promising dielectric elastomer (DE), however increasing its dielectric constant is essential for PU to become a viable DE. Incorporating graphene oxide (GO) as a filler has the potential but may increase dielectric loss and conductivity. Zirconium silicate (ZrSiO₄) is an alternative, but excessive use potentially decreasing the actuation strain. This study delves into the impact of polydopamine (PDA) modification on GO and ZrSiO₄, and their influence on the dielectric and mechanical properties of PU composites. Nanoparticles were modified with PDA, then mixed with PU matrix at various weight percentage through melt-mixing process. The modified nanoparticles (GO-PDA and ZrSiO₄-PDA) significantly enhances the dielectric constant of PU composites compared to unmodified nanoparticles. PU with GO-PDA shows reduction in dielectric loss and conductivity with 70% and 50% decrement compared to unmodified GO due to insulative barriers in GO-PDA. However, ZrSiO₄ modification results in lattice contraction, leading to an increase in dielectric loss (up to 100%) and conductivity (up to 354%) for composites with ZrSiO₄-PDA. A hybrid composite incorporating 2.5 wt.% of GO-PDA and 30 wt.% of ZrSiO₄ was synthesized, demonstrating elevated dielectric constant up to 25, albeit with elevated losses (up to 0.48) and conductivity (up to 5 X 10⁻ 7 S/m), which may stem from a reaction between PDA and ZrSiO₄, affecting the insulating properties of GO-PDA and causing lattice contraction of ZrSiO₄. This study comprehensively explores the effects of PDA modification on GO and ZrSiO4 in PU-based elastomers, shedding light on electrical, mechanical properties, and morphology. It informs potential strategies for developing DE for generators or actuators.

ABSTRAK

Poliuretana (PU) adalah sejenis elastomer dielektrik (DE) yang berpontensi, namun peningkatan pemalar dielektriknya adalah penting bagi PU untuk menjadi DE yang boleh diaplikasikan. Penyertaan grafin oksida (GO) sebagai pengisi mempunyai potensi tetapi boleh meningkatkan kehilangan dielektrik dan kekonduksian. Zirkonium Silikat (ZrSiO₄) merupakan alternatif, tetapi penggunaan berlebihan boleh mengurangkan regangan aktuasi. Kajian ini mengkaji kesan modifikasi (PDA) terhadap GO dan ZrSiO₄, serta kesannya terhadap sifat dielektrik dan mekanikal komposit PU. Nanopartikel dimodifikasi dengan PDA, kemudian dicampur dengan matriks PU pada peratus berat yang berbeza melalui proses pencampuran lebur. Nanopartikel yang diubahsuai (GO-PDA dan ZrSiO₄-PDA) secara signifikan meningkatkan pemalar dielektrik komposit PU berbanding nanopartikel yang tanpa modifikasi. PU dengan GO-PDA menunjukkan penurunan kehilangan dielektrik dan kekonduksian sebanyak 70% dan 50% berbanding GO yang tanpa modifikasi disebabkan penghalang insulatif dalam GO-PDA. Walau bagaimanapun, pengubahsuaian ZrSiO₄ mengakibatkan penyusutan kekisi, menyebabkan peningkatan kehilangan dieletrik (hingga 100%) dan kekonduksian (hingga 354%) bagi komposit dengan ZrSiO₄-PDA. Satu komposit hibrid yang mengandungi 2.5 wt.% GO-PDA dan 30 wt.% ZrSiO₄ telah disintesis, dengan pemalar dielektrik yang tinggi sehingga 25, namun disertai kehilangan yang tinggi (hingga 0.48) dan kekonduksian (hingga 5 X 10-7 S/m), yang mungkin disebabkan oleh tindak balas antara PDA dan ZrSiO₄ yang mempengaruhi sifat insulatif GO-PDA dan menyebabkan penyusutan kesisi ZrSiO₄. Kajian ini secara menyeluruh meneroka kesan pengubahsuaian PDA terhadap GO dan ZrSiO₄ dalam elastomer PU, memberikan penerangan tentang sifat-sifat elektrik, mekanikal, dan morfologi. Ia memberikan pandangan terhadap strategi yang berpotensi ke arah membangunkan DE sebagai generator atau aktuator.

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah the Almighty for providing me with strength, wisdom, and guidance throughout the completion of this journey. I am also immensely thankful to my mother, Meriam bt Ismail, and my entire family for their unwavering support and encouragement over the years.

I extend my heartfelt appreciation to my exceptional supervisor, Assoc. Prof. Dr. Ku Zarina Ku Ahmad, whose invaluable guidance and support were instrumental in the completion of this thesis. I am equally grateful to my co-supervisors, Assoc. Prof. Dr. Raja Nor Izawati Raja Othman and Dr. Ridwan Yahaya, for their valuable insights and support in completing this study. I would also like to express my sincere gratitude to all the technicians at UPNM for their guidance, especially during laboratory activities.

I am grateful to the Ministry of Education Malaysia and Universiti Pertahanan Nasional Malaysia (UPNM) for providing me with the financial support to commence this study.

Lastly, I would like to extend my heartfelt thanks to everyone who encouraged, supported, and prayed for my success in completing this journey. You were an immense source of motivation and inspiration for me.

APPROVAL

The Examination Committee has met on **11th September 2023** to conduct the final examination of **Muhammad Naiem Naqiuddin bin Zaharin** on his degree thesis entitled **'Material Characterization of Polyurethane Dielectric Elastomer''**.

The committee recommends that the student be awarded the Master of Science (Mechanical Engineering)

Members of the Examination Committee were as follows.

Assoc. Prof. Ir. Dr. Mohd Zaid b Othman Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Assoc. Prof. Dr. Mohammad Faizal b Abdullah

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Dr. Nadlene bt Razali

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (External Examiner)

APPROVAL

This thesis was submitted to the Senate of University Pertahanan Nasional Malaysia and has been accepted as partial fulfilment of the requirement for the degree of **Master of Science in Mechanical Engineering**. The members of the Supervisory Committee were as follows:

Assoc. Prof. Dr. Ku Zarina Ku Ahmad

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Assoc. Prof. Dr. Raja Nor Izawati Raja Othman

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co Supervisor)

Dr. Ridwan Yahya

Science and Technology Research Institute of Defense (STRIDE) (Co Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: MUHAMMAD NAIEM NAQIUDDIN BIN ZAHARIN
Date of birth	: 29 DECEMBER 1997
Title	: MATERIAL CHARACTERIZATION OF POLYURETHANE DIELECTRIC ELASTOMER

Academic session : 2021/2023

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the official Secret Act 1972)* RESTRICTED (Contains restricted information as specified by the

organisation where research was done)*OPEN ACCESSI agree that my thesis to be published as online open

access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

Click here to enter text.

IC/Passport No.

Click here to enter text.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iv
APPROVAL	V
DECLARATION OF THESIS	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	XX

CHAPTER

1	INTRODUCTION	1
	1.0 Introduction	1
	1.1 Problem Statement	2
	1.2 Objectives	3
	1.3 Scope	4
	1.4 Contribution	5
	1.5 Theis Outline	5
2	LITERATURE REVIEW	7
	2.0 Introduction	7
	2.1 Introduction of Dielectric elastomer (DE)	7
	2.1.1 Dielectric Elastomer Generator (DEG) Theory	8
	2.1.2 Dielectric Elastomer Actuator (DEA) Theory	11
	2.2 Application of DE	12
	2.2.1 DE in Energy Harvesting Technology	12
	2.2.2 DE in DE in Artificial and Robotic Muscle	14
	Technology	
	2.2.3 DE in Soft Sensors Technology	15
	2.3 Attributes that Affect the Performance of DE	15
	2.3.1 Dielectric permittivity	16
	2.3.2 Dielectric loss	17
	2.3.3 Dielectric breakdown strength	19
	2.3.4 Mechanical properties	19
	2.4 Conventional Material Used as DE	19
	2.4.1 Acrylic	19
	2.4.2 Silicone Rubber	20
	2.4.3 Polyurethane	22
	2.5 Previous Study in DE Composites	23
	2.5.1 DE Composite with Conductive Filler	24
	2.5.2 DE Composite with High Dielectric Filler	29
	2.5.3 DE Composite with Modified Filler	35
		viii

2.5.4 DE Composite with Hybrid Filler	44
2.6 Research Gap Analysis	49
2.7 Theory of FESEM, EDX, FTIR, Dielectric and Tensile	52
Test Characterization	
2.7.1 Field Emission Scanning Electron Microscopy	52
(FESEM) Theory	
272 Energy Dispersive (EDX) Theory	53
273 Fourier-Transform Infrared Spectroscopy	53
(FTIR) Theory	55
2.7.4 Dielectric Characterization Theory	54
2.7.5 Uniovial Direct Tensile Test Theory	55
2.7.5 Official Direct Tenshe Test Theory	56
2.6 Summary	50
METHODOLOGY	57
3.0 Introduction	57
3.1 Material Used in the Study	59
3.2 Modification of GO and ZrSiO4 nanoparticles	59
3.3 Preparation of PU Elastomer	61
3.3.1 Preparation of Neat PU Elastomer	61
3.3.2 Preparation of the PU/GO. PU/GO-PDA and	63
PU/ZrSiO4 and PU/ZrSiO4-PDA Composite	00
Flastomers	
3.3.3 Preparation of the PU/Hybrid Composite	65
Flastomer	05
A Nononartial and Electomer Characterization	65
2.4.1 Field Emission Seenning Electron Microscony	66
(EESEM) Characterization	00
(FESEIM) Characterization	((
3.4.2 Energy Dispersive (EDX) Characterization	66
3.4.3 Fourier-Transform Infrared Spectroscopy	6/
(FTIR) Characterization	
3.4.4 Dielectric Characterization	67
3.4.5 Tensile Test Characterization	68
3.5 Summary	68
RESULT AND DISCUSSION	70
1 0 Introduction	70
1.1 Nanonarticle Characterization	70
4.1.1 Characterization of CO and CO PDA	70
4.1.1 Characterization of GO and GO-PDA	/1
Nanoparticles	75
4.1.2 Characterization of ZrSiO4 and ZrSiO4-PDA	/5
Nanoparticles	-
4.2 Characterization of PU Composite Elastomers	79
4.2.1 Characterization of PU/GO and PU/GO-PDA	79
Composites	
4.2.2 Characterization of PU/ZrSiO4 and PU/ZrSiO4-	93
PDA Composites	

	4.2.3 Characterization of PU/Hybrid Composite	105
5	CONCLUSION AND RECOMMENDATION	114
	5.0 Introduction	114
	5.1 Conclusion	114
	5.2 Recommendation	115
	REFERENCES	117
	APPENDIX A – STRAIN-STRESS CURVE	130
	APPENDIX B – LIST OF PUBLICATION	132
	BIODATA OF STUDENT	133

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
Table 2.1	Different polarization mechanisms	16
Table 2.2	Dielectric elastomer with conductive filler	25
Table 2.3	Dielectric elastomer with high dielectric filler	30
Table 2.4	Dielectric elastomer with modified fillers	36
Table 2.5	Dielectric elastomer with hybrid filler	45
Table 2.6	Research gap analysis	49
Table 3.1	Amount of GO nanoparticles, ZrSiO4 nanoparticles, PDA,	60
	and the ratio of nanoparticles with the PDA used in the	
	modification	
Table 4.1	FTIR spectrum and their assignment of GO and GO-PDA	74
	nanoparticles	
Table 4.2	FTIR spectrum and their assignment of ZrSiO4 and	78
	ZrSiO ₄ -PDA nanoparticles	
Table 4.3	Dielectric and mechanical properties of PU elastomer and	106
	single-filler composites	

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
Figure 2.1	Dielectric elastomer illustration	8
Figure 2.2	Operating principle of dielectric elastomer generator (DEG)	9
Figure 2.3	The electromechanical transformation in DEG's operating	10
	principle [26]	
Figure 2.4	Basic principle of dielectric elastomer actuator (DEA)	11
Figure 2.5	Illustration of oscillation water column (OWC) system [8]	13
Figure 2.6	Schematic of tan δ versus angular frequency [46]	18
Figure 2.7	Acrylate polymer synthesis [52]	20
Figure 2.8	Formulation of silicone rubber [56]	21
Figure 2.9	Polyurethane formation [59]	22
Figure 2.10	Comparison of polyurethane, silicone, and acrylic attributes	23
	[63]	
Figure 2.11	Enhancement of interfacial polarization of polymer through	24
	filler loadings	
Figure 2.12	FESEM modules and sample of FESEM image	53
Figure 2.13	Parallel plate method for dielectric measurement	55
Figure 2.14	Strain-stress curve	56
Figure 3.1	The methodology flowchart of this research	58
Figure 3.2	Material used in this research, (a) PU granules, (b) GO	59
	nanosheets, (c) ZrSiO4 powder, and (d) PDA powder	

Figure 3.3	Preparation of modified nanoparticles	60
Figure 3.4	Specimen dimension for uniaxial direct tensile test	62
	according to ISO 37:2017	
Figure 3.5	Sample for dielectric characterization	62
Figure 3.6	Sample for tensile test according to ISO 37:2017	63
Figure 3.7	Preparation of PU composite elastomer	64
Figure 3.8	ZEISS GeminiSEM 500	66
Figure 3.9	(a) Keysight Agilent E4990A impedance analyzer, (b)	68
	16451B probe	
Figure 4.1	FESEM image of GO nanoparticles (red arrows indicate the	71
	sharp edges and smooth surface of GO nanoparticles)	
Figure 4.2	FESEM image of GO nanoparticles (red arrows indicate	72
	irregular edges and rougher surfaces of GO-PDA	
	nanoparticles)	
Figure 4.3	EDX spectrum of GO and GO-PDA nanoparticle (Carbon-	73
	red dots, Oxygen-green dots)	
Figure 4.4	FTIR spectrum of GO and GO-PDA nanoparticles	75
Figure 4.5	FESEM image of ZrSiO ₄ nanoparticles (red arrows indicate	76
	irregular structure, sharp edges, and smooth surfaces of	
	ZrSiO ₄ nanoparticles)	
Figure 4.6	FESEM image of ZrSiO ₄ -PDA nanoparticles (red-dotted	76

circle indicates the clump of ZrSiO₄-PDA nanoparticles (red-dotted 76

- Figure 4.7 EDX spectrum of (a) ZrSiO₄ and (b) ZrSiO₄-PDA 77 nanoparticles (Zirconium-blue dots, Silicone-green dots, Oxygen-red dots)
- Figure 4.8 FTIR spectrum of ZrSiO₄ and ZrSiO₄-PDA nanoparticles 78
- Figure 4.9 Effect of GO nanoparticles weight percentages on dielectric 81 constant of PU/GO composites at various frequency
- Figure 4.10 Interfacial polarization of PU elastomer (a) without GO 81 nanoparticle and (b) with GO nanoparticles
- Figure 4.11 Effect of GO-PDA nanoparticles weight percentages on 83 dielectric constant of PU/GO-PDA composites at various frequency
- Figure 4.12 The dielectric constant of PU/GO and PU/GO-PDA 83 composites at various weight percentages (at 1 kHz)
- Figure 4.13 Interfacial polarization of PU elastomer (a) with GO 84 nanoparticle and (b) with GO-PDA nanoparticles
- Figure 4.14 Effect of GO nanoparticles weight percentages on dielectric 85 loss of PU/GO composites at various frequency
- Figure 4.15 Effect of GO-PDA nanoparticles weight percentages on 86 dielectric loss of PU/GO-PDA composites at various frequency
- Figure 4.16 The dielectric loss of PU/GO and PU/GO-PDA composites 87 at various weight percentages (at 1 kHz)

- Figure 4.17 Conductive pathway in (a) PU/GO composites and (b) 87 PU/GO-PDA composites
- Figure 4.18 Effect of GO nanoparticles weight percentages on 88 conductivity of PU/GO composites at various frequency
- Figure 4.19 Effect of GO-PDA nanoparticles weight percentages on 89 conductivity of PU/GO-PDA composites at various frequency
- Figure 4.20 The conductivity of PU/GO and PU/GO-PDA composites at 90 various weight percentages (at 1 kHz)
- Figure 4.21 Elongation at break of PU/GO and PU/GO-PDA at different 91 nanoparticles content wt.%)
- Figure 4.22 Elastic modulus of PU/GO and PU/GO-PDA at different 92 nanoparticles content (wt.%)
- Figure 4.23 FESEM images of (a) PU/GO-0.5 wt.%, (b) PU/GO-2.5 93
 wt.%, (c) PU/GO-PDA-0.5 wt.% and (d) PU/GO-PDA-2.5
 wt.% composites. (Magnification: 500X, WD: 5.3mm, Signal A: SE2)
- Figure 4.24 Effect of ZrSiO₄ nanoparticles weight percentages on 94 dielectric constant of PU/ZrSiO₄ composites at various frequency

- Figure 4.25 Effect of ZrSiO₄-PDA nanoparticles weight percentages on 95 dielectric constant of PU/ZrSiO₄-PDA composites at various frequency
- Figure 4.26 The dielectric constant of PU/ZrSiO₄ and PU/ZrSiO₄-PDA 96 composites at various weight percentages (at 1 kHz)
- Figure 4.27 Effect of ZrSiO₄ nanoparticles weight percentages on 97 dielectric loss of PU/ZrSiO₄ composites at various frequency
- Figure 4.28 Effect of ZrSiO₄-PDA nanoparticles weight percentages on 98 dielectric loss of PU/ZrSiO₄-PDA composites at various frequency
- Figure 4.29 The dielectric loss of PU/ZrSiO₄ and PU/ZrSiO₄4-PDA 98 composites at various weight percentages (at 1 kHz)
- Figure 4.30 Effect of ZrSiO₄ nanoparticles weight percentages on 99 conductivity of PU/ZrSiO₄ composites at various frequency
- Figure 4.31 Effect of ZrSiO₄-PDA nanoparticles weight percentages on 100 conductivity of PU/ZrSiO₄-PDA composites at various frequency
- Figure 4.32 The conductivity of PU/ZrSiO₄ and PU/ZrSiO₄-PDA 100 composites at various weight percentages (at 1 kHz)
- Figure 4.33 XRD patterns of ZrSiO₄ and ZrSiO₄ nanoparticle 102
- Figure 4.34 Elongation at break of PU/ZrSiO₄ and PU/ZrSiO₄-PDA 103 composites at different nanoparticles content (wt.%)

- Figure 4.35 Elastic modulus of PU/ZrSiO₄ and PU/ZrSiO₄-PDA 104 composites at different nanoparticles content (wt.%)
- Figure 4.36 FESEM images of (a) PU/ZrSiO₄-30 wt.%, (b) PU/ZrSiO₄105 50 wt.%, (c) PU/ZrSiO₄-PDA-30 wt.% and (d) PU/ZrSiO₄PDA-50 wt.% composites. Red lines indicate the formation of voids. (Magnification: 500X, WD: 5.3mm, Signal A: SE2)
- Figure 4.37 The dielectric constant of PU/Hybrid at various frequency 108
- Figure 4.38 The dielectric loss of PU/Hybrid at various frequency 109
- Figure 4.39 The conductivity of PU/Hybrid at various frequency 110
- Figure 4.40 Dielectric properties of PU/GO-PDA-2.5 wt.%, PU/ZrSiO₄- 111 30 wt.% and PU/Hybrid; (a) Dielectric constant, (b) Dielectric loss and (c) Conductivity
- Figure 4.41 Elongation at break of PU/GO-PDA-2.5 wt.%, PU/ZrSiO₄- 112 30 wt.% and PU/Hybrid
- Figure 4.42 Elastic modulus of PU/GO-PDA-2.5 wt.%, PU/ZrSiO₄-30 112 wt.% and PU/Hybrid
- Figure 4.43 FESEM images of PU/Hybrid composites 113

LIST OF ABBREVIATIONS

DE	Dielectric elastomer
GO	Graphene oxide
ZrSiO ₄	Zirconium silicate
PU	Polyurethane
PDA	Polydopamine
DEG	Dielectric elastomer generator
DEA	Dielectric elastomer actuator
WEC	Wave-energy converter
OWC	Oscillating water column
Ag	Silver
PPMTC	Poly(propylene-monothiocarbonate)
Si	Silicone
SWCNT	Single-walled carbon nanotube
MWCNT	Multi-walled carbon nanotube
SR	Silicone Rubber
BaTiO ₃	Barium titanate
SrTiO ₃	Strontium titanate
ССТО	Copper titanate
PZT	Zirconate titanate
HDPE	High-density polyethylene
TiC	Titanium carbide

SiO ₂	Silicon dioxide
FESEM	Field emission scanning electron microscopy
EDX	Energy dispersive X-ray
FTIR	Fourier-transform infrared spectroscopy
UTM	Universal Testing Machine
Wt%	Weight percentage
Pa	Pascal

LIST OF SYMBOLS

- ε_0 Vacuum permittivity
- ε_r Relative permittivity
- *U* Internal storage
- *C* Capacitance
- V Voltage
- *A* Surface area of elastomer
- *Z* Thickness of elastomer
- W_E Harvested energy
- V_b Bias voltage
- σ Maxwell pressure
- s_z Actuation strain
- β Electromechanical sensitivity
- Y Elastic modulus
- *s* AC conductivity
- f Frequency

CHAPTER 1

INTRODUCTION

1.0 Introduction

Dielectric elastomer (DE) has been known since the early days of electricity when James Maxwell identified the impact of dielectric materials known as Maxwell stress in his work on the foundation of electromagnetic theory [1]. DE first came to the attention of academics in the 1990s, when various research articles and findings for prospective uses were published. This might be due to DEs' unique ability to transform electrical energy into mechanical energy and vice versa, making them adaptable enough to be used in a variety of sectors. There are various suitable polymers that can act as a dielectric elastomer such as acrylic [2]–[5], silicone rubber [6]–[8], poly (vinylidene fluoride) (PVDF) [9], [10] natural rubber [11], and polyurethane.

Polyurethane has emerged as a potential material to be used as a dielectric elastomer due to its high dielectric constant and huge force outputs, allowing them to be actuated at lower electric fields. However, improvement is still required to make polyurethane a viable dielectric elastomer. Increasing the dielectric permittivity of polyurethane elastomer leads to a rise in capacitance, which aids in the development of better DE. A common method is to create elastomer composites by introducing filler into the system. Conductive filler such as metal or carbon filler and high dielectric filler such as ceramic is proven to be able to increase the polymer dielectric permittivity but at a cost.

In this study, graphene oxide (GO) and zirconium silicate (ZrSiO₄) were incorporated into the PU matrix to study the effect of those fillers on the dielectric and mechanical properties of the elastomer. These nanofillers were also modified with polydopamine (PDA) and incorporated with PU matrix to study the effect of the modification towards the elastomer dielectric and mechanical attributes. Last but not least, a hybrid composite of GO and ZrSiO₄ was made based on the characterization result of the single-filler composite. Dielectric characterization was done through dielectric analyzer and mechanical characterization was done using tensile test. Other characterization such as morphology, spectral and elemental were also been carried out using FESEM, FTIR and EDX analysis, respectively.

1.1 Problem Statement

Polyurethane (PU) possesses several favorable properties, including a high dielectric permittivity, low dielectric loss, and impressive stretchability. However, its suitability as a DE is limited by certain drawbacks, such as a high elastic modulus and low breakdown strength. The high elastic modulus hampers electromechanical sensitivity, thereby impacting the DE's actuation capabilities. Additionally, the low breakdown strength restricts the maximum voltage that can be applied to the elastomer before it conducts electricity. One potential solution to address these challenges is to enhance the elastomer's dielectric permittivity. By increasing the dielectric permittivity, the elastomer's actuation

functionality can be achieved with minimal voltage, effectively overcoming the limitation of low breakdown strength. Furthermore, elevating the dielectric permittivity of the material augments its capacitive properties, allowing it to store more energy and perform exceptionally well as a generator.

Graphene oxide (GO) is an excellent filler for this endeavor. It has ultra-high electrical conductivity and a large specific surface area thanks to the unique twodimensional (2-D) structure of GO, which aids in boosting the elastomer's interfacial polarization and dielectric permittivity [12]–[14]. However, the addition of conductive fillers such as graphene increases the dielectric loss and conductivity of the polymer, resulting in decreased breakdown strength and system efficiency [15]–[17].

Due to its high dielectric constant, zirconium silicate (ZrSiO₄) is also a viable option filler for DE composite [18]. Aside from that, its insulative qualities demonstrated low leakage current densities and maximum capacitance densities, which aids in the development of DE with high dielectric permittivity and low loss [19]. However, massive loadings of ceramic filler have been shown to significantly increase the dielectric permittivity of the polymer. High filler loadings improve the elastic modulus of the elastomer, resulting in a stiff and low actuation strain elastomer [20]–[22].

1.2 Objective

The purpose of this study is to achieve several objectives as follows:

1. To characterize the effect of the PDA-modification towards GO and ZrSiO₄ nanoparticle's morphology, elemental and composition.