IMAGE DIGITIZATION COLORIMETRIC DETECTION OF ACEPHATE BASED ON ACEPHATE-THIOLATED ACEPHATE BINDING APTAMER-GOLD NANOPARTICLE COMPLEX

MOHD JUNAEDY OSMAN

DOCTOR OF PHILOSOPHY (CHEMISTRY)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2022

IMAGE DIGITIZATION COLORIMETRIC DETECTION OF ACEPHATE BASED ON ACEPHATE-THIOLATED ACEPHATE BINDING APTAMER-GOLD NANOPARTICLE COMPLEX

MOHD JUNAEDY OSMAN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Doctor of Philosophy (Chemistry)

, - - - **,** , ,

2022

ABSTRACT

For years, organophosphates (OPs) compounds are used for pest control in agriculture. However, uncontrolled usage of OPs causes genotoxic, teratogenic as well as other environmental and ecological adverse impacts. The detection of OPs using conventional methods gives good results but existed with several limitations such as bulky, time-consuming analysis and expensive. A colorimetric detection method receives an attention as it can be modified to overcome these limitations due to its simplicity. In this study, colorimetric detection of Ac was conducted by surface functionalisation of gold nanoparticles with thiolated acephate binding aptamer (TABA). Preparation of gold nanoparticles (AuNPs) was conducted using two heating techniques. Preparation of AuNPs using microwave radiation technique resulted in smaller particles size (of 10 + 3nm) compared to that of the conventional heating technique (of 16 ± 4 nm). Ultra-violet visible (UV-Vis) analysis showed the existent of surface plasmon resonance phenomenon for both prepared AuNPs whereas Fourier transformed infra-red spectrometer (FTIR) analysis suggested there was a physical interaction at the surface of AuNPs. Study on the effect of AuNPs to Ac mole concentration ratio revealed that the best ratio for the detection was 1:35. In addition, better detection of Ac was also achieved using smaller particles size AuNPs. Assessments of the distinct colour change (from red to dark purple) of the complex were carried out by comparing the value of red fragment of the digitized images. Analyses of high-resolution transmission electron microscope (HRTEM), UV-Vis and FTIR spectroscopy confirmed that aggregation of particles complex occurred. A study on the effect of ions on TABA towards the detection of Ac revealed that detection capability towards Ac was enhanced with the introduction of Mg^{2+} . Optimised sensor parameters obtained from central composite design response surface methodology (CCD-RSM) were validated and good lowest limit of detection which was 11 ppb, was achieved. In addition, selectivity and reproducibility of the optimized method for the real sample analysis was good. Based on the results of this study, it can be concluded that the proposed image digitization colorimetric detection method produced a rapid, sensitive, and selective detection towards Ac.

ABSTRAK

Pengunaan sebatian organofosfat (OPs) untuk kawalan haiwan perosak dalam pertanian telah bertahun-tahun diamalkan. Walau bagaimanapun, penggunaan OPs yang tidak terkawal menyebabkan genotoksik, teratogenik serta kesan buruk yang lain ke atas persekitaran dan ekologi. Pengesanan OPs menggunakan kaedah konvensional memberikan hasil yang baik tetapi terdapat beberapa batasan seperti memerlukan saiz sampel yang besar, masa analisis yang lama dan peruntukan kewangan yang besar. Kaedah pengesanan kolorimetrik diberi tumpuan bagi mengatasi masalah yang disebut di atas kerana keringkasannya. Dalam kajian ini, pengesanan kolorimetrik terhadap Ac dilakukan dengan mengfungsikan permukaan nanopartikel emas dengan aptamer pengikat asefat tertiol (TABA). Penyediaan nanopartikel emas (AuNPs) dilakukan dengan menggunakan dua teknik pemanasan. Penyediaan AuNPs menggunakan teknik radiasi gelombang mikro yang menghasilkan zarah yang lebih kecil (iaitu 10 ± 3 nm) berbanding dengan hasil dari penyediaan yang menggunakan teknik pemanasan termal (iaitu 16 + 4nm). Analisis ultra-ungu nampak (UV-Vis) menunjukkan fenomena resonan plasmon permukaan untuk kedua-dua AuNPs dan analisis spektrometer inframerah transfomasi Fourier (FTIR) mencadangkan interaksi fizikal permukaan AuNPs. Kajian mengenai kesan nisbah molar kepekatan AuNPs ke atas Ac menunjukkan bahawa nisbah terbaik untuk pengesanan adalah 1:35. Disamping itu, pengesanan Ac yang lebih baik diperolehi dengan menggunakan AuNPs yang mempunyai zarah yang lebih kecil. Penilaian perubahan warna (dari merah ke ungu gelap) dilakukan dengan membandingkan nilai pecahan warna merah dari pendigitan gambar. Analisis mikroskop elektron transmisi resolusi tinggi (HRTEM), UV-Vis dan FTIR mengesahkan bahawa pengumpalan zarah kompleks berlaku. Kajian mengenai pengaruh ion ke atas TABA bagi pengesanan Ac menunjukkan bahawa keupayaan pengesanan terhadap Ac dipertingkatkan dengan penambahan Mg²⁺. Parameter sensor yang optimum diperoleh malalui kaedah gerak balas permukaan rekabentuk komposit pusat (CCD-RSM) dengan had pengesanan 11 ppb. Kepemilihan dan keboleh ulangan kaedah terhadap pengesanan Ac untuk analisis sampel sebenar adalah baik. Hasilhasil kajian ini memberi kesimpulan bahawa kaedah pengesanan kolorimetrik yang dicadangkan adalah pantas, peka dan selektif terhadap Ac.

APPROVAL

The Examination Committee has met on **5 October 2021** to conduct the final examination of **Mohd Junaedy bin Osman** on his degree thesis entitled **Image digitization colorimetric detection of acephate based on acephate-thiolated acephate binding aptamer-gold nanoparticle complex**.

The committee recommends that the student be awarded the of Doctor of Philosophy (Chemistry).

Members of the Examination Committee were as follows.

Prof. Dr. Azizi Miskon

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

PM. Dr. Noor Azilah Mohd Kasim Center for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Dr. Nor Azah Yusof Faculty of Science Universiti Putra Malaysia (External Examiner)

Prof. Dr. Sharifah Mohamad

Faculty of Science Universiti Malaya (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Doctor of Philosophy (Chemistry)**. The members of the Supervisory Committee were as follows.

Prof. Emeritus Dato' Dr. Wan Md Zin bin Wan Yunus

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Prof. Dr. Ong Keat Khim

Center for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Dr. Jahwarhar Izuan bin Abd Rashid Center for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name : Mohd Junaedy bin Osman

Date of birth : 01 Mar 1986

Title : Image digitization colorimetric detection of acephate based on acephatethiolated acephate binding aptamer-gold nanoparticle complex

Academic session : 2017/2018

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the official Secret Act 1972)*
RESTRICTED (Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

860301305079 IC/Passport No. Prof. Em. Dato' Dr. Wan Md Zin Wan Yunus **Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

ABSTRACT ABSTRAK APPROVAL APPROVAL DECLARATION OF THESIS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS	iv iv vi vii viii xiii xiv xvii
CHAPTER 1	1
INTRODUCTION	1
1.1 Overview	1
1.2 Problem Statement and Research Motivation	5
1.3 Novelty of Research	6
1.4 Research Objectives	6
1.5 Scope and Limitation	7
CHAPTER 2	8
LITERATURE REVIEW	8
2.1 Overview of organophosphate	8
2.2 Organophosphate compounds	10
2.2.1 Characteristic of organophosphate compound	10
2.2.2 Organophosphate toxicity	14
2.2.3 Acephate	17
2.3 Detection method	21
2.3.1 Instrument based detection methods	22
2.3.2 Detection of organophosphate using gold nanoparticles sensor	31
CHAPTER 3	41
METHODOLOGY	41
3.1 Materials	41
3.2 Preparation of gold nanoparticles	44
3.2.1 Microwave radiation method	44
3.2.2 Conventional nearing method	43
3.3 Detection of acephate using gold nononarticles propared via different	43
beating techniques	16
3.3.2 Study on gold nanonarticles: acephate mole concentration ratio on	-0
acephate detection	46
3.4 Preparation of thiolated acephate binding aptamer gold nanoparticles	47
3.5 Optimization of thiolated acephate binding aptamer gold nanoparticles	47
3.5.1 Detection of acephate using thiolated acephate binding aptamer gold	
nanoparticles	48
3.5.2 Preliminary study on the effect of ionic strength.	48

3.5.3	Study of optimum binding temperature	48
3.5.4	Respond surface methodology by central composite design	49
3.6 II	nterference study	51
3.7 R	eal Sample Testing	51
3.8 C	haracterization methods	51
3.8.1	Laser Test	52
3.8.2	Ultra-violet visible spectroscopy	52
3.8.3	High resolution transmission electron microscope	53
3.8.4	Fourier transform infra-red spectroscopy	53
3.8.5	Image processing technique	53
3.8.6	Independent sample <i>t</i> -test	54
CHAPTE	R 4	55
RESULTS	S AND DISCUSSION	55
4.1 P	reparation of gold nanoparticles	55
4.1.1	Laser Analysis	57
4.1.2	Surface Plasmon Resonance analysis using ultra-violet visible	
spectr	ophotometer	57
4.1.3	Size and particle shape study using High Resolution Transmission	
Electr	on Microscopy	59
4.1.4	Chemical interaction study using Fourier Transform infrared	
spectr	oscopy	64
4.2 D	Detection of acephate using pristine gold nanoparticles prepared via	
microwa	we irradiation and thermal heating techniques	65
4.2.1	Effect of heated gold nanoparticles to acephate mole concentration rat	io
on ace	phate-gold nanoparticles complexation	65
4.3 C	ptimization of sensor parameter	74
4.3.1	Determination of most sensitive colour fragment of digitized images	74
4.3.2	Determination of most effective sensor from the prepared gold	
nanop	articles	78
4.4 C	ptimization of sensor parameter towards improve detection of acephate	e 84
4.4.1	Effect of thiolated acephate binding aptamer to microwave radiated go	old
nanop	articles binding temperature towards detection of acephate	86
4.4.2	Effect of ion towards detection of acephate	87
4.4.3	Central composite design-Response surface methodology	95
4.4.4	Combined effect of concentration of phosphate buffer saline,	
conce	ntration of thiolated acephate binding aptamer, incubation period of	
thiola	ted acephate binding aptamer microwave radiated gold nanoparticles an	ıd
conce	ntration of magnesium sulphate	97
4.4.5	Optimization of sensor parameters for detection of acephate	106
4.5 S	ample analysis using optimized sensor parameters	107
4.5.1	Detection of acephate using optimized sensor parameters	107
4.5.2	Interference study of optimized sensor parameters using other	
organ	ophosphates	110
4.5.3	Analytical performance of optimized sensor parameters on real sample	es
detect	ion	113

CHAPTER 5		115
CONC	LUSION AND RECOMMENDATIONS	115
5.1	Conclusion	115
5.2	Recommendation for future study	116
REFEF	RENCES	117
APPEN	DICES	140
BIODA	TA OF STUDENT	144
LIST O	F PUBLICATION, AWARD AND CONFERENCE	145

LIST OF TABLES

	Page
Table 2.1: Classification of organophosphates	13
Table 2.2: Physical properties of Ac	18
Table 2.3: Recent colorimetric detection of OPs research employing AuNPs as sensor array	33
Table 3.1: Chemical structure of Ac and OPs tested in this study	43
Table 3.2: Optimization of detection conditions	49
Table 3.3: The CCD-RSM to modify TABA-AuNP-Mg sensor	50
Table 4.1: Photographed images and RVs of the Ac-HAuNPs complex formed various HAuNPs : Ac mole concentration ratios	using 67
Table 4.2: Photographed images and mean digitized value of Ac-AuNPs complexation	76
Table 4.3: The RVs of the photographed images for both Ac-MAuNPs and Ac- HAuNPs complexation	- 80
Table 4.4: Photographed images and RV for the detection of Ac	85
Table 4.5: The RV for the detection of Ac at different binding temperatures	86
Table 4.6: Independent t-test results on the effect of ions on detection of Ac	89
Table 4.7: Experimental factors in coded and actual units and experimental res	ponses 95
Table 4.8: Analysis of variance (ANOVA) for response surface quadratic mode RVs	el for 96
Table 4.9: Optimal detection conditions and method validation for detection of from numerical optimization.	Ac 107
Table 4.10: Independent t-test of photographed images for detection of various concentrations of Ac	109
Table 4.11: Mean RVs for the photographed images of the complex and interfe complexes at 11 ppb	ered 111
Table 4.12: Mean RVs for the photographed images of the complex and interfe complexes at 22 ppb	ered 111
Table 4.13: Mean RVs for the photographed images of the complex and interfe complexes at 33 ppb	ered 112

Table 4.14: Mean RVs for the photographed images of the complex and interfered	
complexes at 44 ppb	112
Table 4.15: Photographed images of tap water and lake water spiked with Ac	114
Table 4.16: Detection results of tap water and lake water spiked with Ac	114

LIST OF FIGURES

Pa	age
Figure 2.1: General molecular structure of OPs	10
Figure 2.2: Classification of OPs compounds (a) category 1 and (b) category 2 (Firozjaei et al., 2015)	11
Figure 2.3: Relationships of effect between OPs on environment and on human and animals (Firozjaei et al., 2015)	d 14
Figure 2.4: Irreversible phosphorylated mechanism between AChE and OPs	15
Figure 2.5: Structural formula of Ac	18
Figure 2.6: Degradation pathway of Ac (direct adaptation (Sud & Kaur, 2012))	20
Figure 2.7: Degradation of Ac via microbial degradation pathway (direct adaptation (Lin et al., 2020))	on 21
Figure 2.8: Schematic of relationship between the particles distance and SPR phenomenon	32
Figure 2.9: TEM images of different shapes of AuNPs (a) decahedral, (b) truncated tetrahedral, (c) cube, (d) hexagonal nanosheet, (e) cubic and (f) octahedral dire adaptation (Chen et al., 2005)	1 ect 35
Figure 2.10: TEM images of different shaped gold nanoparticles produced after varying the concentration of DGDG (a) round shape, (b) rod shape, (c) triangle shape and (d) hexagonal shape direct adaptation (Kato et al., 2018)	e 36
Figure 2.11: TEM images of different shape of gold nanoparticles formed by changing the Na2HPO4: HEPES molar ratio (a) nanosphere, (b) nanoflower as (c) nanoplate direct adaptation (K. Liu et al., 2019)	nd 37
Figure 2.12: Surface plasmon resonance characteristic of prepared gold nanoparticl with various shape direct adaptation (K. Liu et al., 2019).	les 38
Figure 4.1: Schematic illustration for formation of AuNP	56
Figure 4.2: Laser analysis to determine the SPR phenomenon in (a) water, (b) MAuNPs and (c) HAuNPs	57
Figure 4.3: UV-Vis absorbance spectra of (a) HAuCl4 solution and suspensions of (b) MAuNPs and (c) HAuNPs	58
Figure 4.4 (i): HRTEM images of (a) MAuNPs at 50000 times magnification, (b) MAuNPs 100000 times magnification	60
Figure 4.4 (ii): HRTEM images of (c) HAuNPs at 50000 times magnification, (d) HAuNPs at 100000 times magnification	61

Figure 4.5: Size distribution histogram of MAuNPs and HAuNP	62
Figure 4.6: Coagulation agglomerates observed in TEM micrograph for MAuNPs 100000 times magnification	at 63
Figure 4.7: FTIR spectra of (a) Na-Cit solution and (b) HAuNPs suspension	64
Figure 4.8: Proposed schematic of unidentate coordination of the AuNPs	65
Figure 4.9: UV-Vis absorption spectra of blank and Ac-HAuNPs complexes formusing various AuNPs: Ac mole concentration ratio	ed 68
Figure 4.10: HRTEM micrograph of Ac-HAuNPs arrangement at 1:35 Cit-AuNP Ac mole concentration ratio at 50000 times magnification	: 69
Figure 4.11: FTIR spectra of (a) HAuNPs, (b) Ac, and (c) HAuNPs : Ac at 1:35 m concentration ratio	nole 72
Figure 4.12: SN2 nucleophilic substitution schematic of colorimetric detection of	Ac 73
Figure 4.13: Linear-fitted line plot of the interaction between mean digitized value of each colour fragments vs concentration of Ac for (a) Ac-MAuNPs and (b) Ac-HAuNPs complexation	es 77
Figure 4.14: UV-Vis spectra of (i) Ac-MAuNPs and (ii) Ac-HAuNPs complexes after reacting with various concentrations ((a) 0.00 mM, (b) 1.00X10-5 mM, 1.00X10-3 mM, (d) 0.40 mM, (e) 1.00 mM and (f) 4.00 mM and (g) 8.00 mM of Ac solutions.	(c) M) 81
Figure 4.15: HRTEM images for (a) Ac-MAuNPs and (b) Ac-HAuNPs at 50000x magnification	82
Figure 4.16: Linear-fitted line plots of interaction between mean RVs and concentration of Ac for (a) Ac-MAuNPs and (b) Ac-MAuNPs complexations	83
Figure 4.17: UV-Vis absorbance spectra of (a) AuNPs, and Ac-TABA-AuNPs at different binding temperature; (b) 5 oC (c) 25 oC and (d) 40 oC	87
Figure 4.18: FTIR spectra of (a) Ac-TABA-MAuNPs and (b) Ac-TABA-MAuNP Mg2+	s- 91
Figure 4.18: UV-Vis absorbance spectra of (a) TABA-MAuNPs, (b) Ac-TABA-MAuNPs, (c) Ac- TABA-MAuNPs with present of Cl- and (d) Ac-TABA-MAuNPs with present of SO42-	92
Figure 4.19: UV-Vis absorbance spectra of (a) MAuNPs, (b) Ac-TABA-MAuNPs (c) Ac- TABA-MAuNPs with present of Mg2+ and (d) Ac-TABA-MAuNPs with present of Na+	, 93
Figure 4.20: HRTEM images of (a) Ac-TABA-MAuNPs and (b) Ac-TABA-MAuNPs-Mg complexation at 10000 times magnification	94

Figure 4.21: Response surface plot showing the effect of (a) concentration of PBS and concentration of TABA, (b) concentration of PBS and incubation period TABA-MAuNPs, (c) concentration of PBS and concentration of MgSO4, (d) concentration of TABA and incubation period of TABA-MAuNPs, (e)	of
TABA-MAuNPs and concentration of MgSO4.	105
Figure 4.22: Numerical optimization parameters of RVs	106
Figure 4.23: Linear-fitted line plot of the interaction between mean RVs vs concentration of Ac	110
Appendix 1: Schematic of experimental set-up for capturing the colour of the complex for image processing procedures	140
Appendix 2: Top view of the complex	140
Appendix 3: Process flow to digitized photographed images using ImageJ softwa	re 141
Appendix 4: Full report of response surface methodology	142
Appendix 5: Raw data of RVs for detection of Ac using optimised sensing param	eter 143

LIST OF ABBREVIATIONS

Ac	Acephate
AChE	Acetylcholinesterase enzyme
Ac-TABA-AuNPs	Acephate reacted thiolated acephate binding aptamer
	gold nanoparticles complex
ANOVA	Analysis of variance
As	Asymmetric stretching
AuNPs	Gold nanoparticles suspension
BChE	Butyrylcholinesterase
СА	Chromosomal aberrations
C.V.	Coefficient of variant
DNA Apt	Deoxyribonucleic acid aptamer
FTIR	Fourier transformed infra-red spectrometer
GABA	Gamma-Aminobutyric acid
GC	Gas chromatography
GQ	Guanine quadruplex
Ho	Null hypothesis which suggests that no statistical
	relationship and significance exists in a set of given
	single observed variable, between two sets of observed
	data and measured phenomena.
HAuNPs	Gold nanoparticles prepared via conventional heating
	method
HRTEM	High resolution transmission electron microscope
IC	Ion chromatography

xvii

ImageJ	ImageJ software
IMS	Ion mobility spectrometry
LC	Liquid chromatography
LMCT	Ligand to metal charge transfer
LOD	Limit of detection
LOQ	Limits of quantification
mAChR	Muscarinic receptors
MAuNPs	Gold nanoparticles prepared via microwave heating
	method
mM	Unit of concentration millimolar
MS	Mass spectrometry
OPs	Organophosphates
OPFR	Organophosphate flame retardants and plasticisers
ppb	Unit of concentration part per billion
ppm	Unit of concentration part per million
R^2	Coefficient of determination
RGB	Red, green and blue colour components
ROS	Reactive oxygen species
RSD	Relative standard deviation
RSM	Response surface methodology
RVs	Digitized red values
S	Symmetric stretching
SD	Standard deviation
SERS	Surface enhanced Raman spectroscopy
SPR	Surface plasmon resonance

TABA	Thiolated acephate binding aptamer
TABA-AuNPs	Thiolated acephate binding aptamer gold nanoparticles
	suspension
t-Test	Statistical test that is used to compare the means of two
	groups
UV-Vis	Ultraviolet-visible spectrophotometer

CHAPTER 1

INTRODUCTION

1.1 Overview

Organophosphates (OPs) are a group of compounds that are widely used as pesticides and insecticides in an agriculture sector. Excessive application of pesticides leads to the severe environmental issues that will affect humans' and animals' health. Like the OPs that are used as chemical warfare agents, these OPs possess the same mechanism of action which causes toxicity by inhibiting the activity of acetylcholinesterase enzyme (AChE) in neuromuscular junctions and in blood (V. Kumar et al., 2015; Spassova et al., 2000). The OPs bind with the hydroxyl group of the serine unit of the AChE to inhibit acetylcholinesterase activity, leading to acetylcholine accumulation in the synaptic junctions and finally causing death (Colovic et al., 2013; Sulaiman et al., 2020).

Acephate (Ac) is the most common and efficient of an OP that is used for pest control in agriculture (Lin et al., 2020). Degradation of Ac by bacteria in the presence of oxygen produces an extremely hazardous OP, methamidophos (Han et al., 2009; Luo et al., 2016) (Eq. 1). Ac is categorized as a class II-"moderately hazardous" pesticide, but methamidophos is characterized as a class IV- "highly toxic" pesticide (Huang et al., 2018; Luo et al., 2016; WHO, 2019). Ac and its metabolite are highly water-soluble and can easily contaminate groundwater and soil, therefore, are easily absorbed by plants and accumulated in their edible parts (Rawtani et al., 2018; Saini et al., 2017). Equation 1 shows the chemical equation of Ac that undergoes hydrolysis reaction to form methamidophos.

Conventional detection techniques are widely used to detect OPs due to their sensitivity which can be up to part per trillion. However, they are bulky and expensive instrumentations. These techniques include a single or combination of the following techniques: gas chromatography (GC) (Cinelli et al., 2014; Ghavidel et al., 2014; Martel et al., 2018), liquid chromatography (LC) (Akoijam et al., 2018; Han et al., 2017; Mahajan & Chatterjee, 2018), ion chromatography (IC) (Weber et al., 2016) , mass spectrometry (MS) (Francis et al., 2009) and surface enhanced Raman spectroscopy (SERS) (Clauson et al., 2015; Fan et al., 2014; Kim et al., 2015). These techniques require competent operators to operate and analyse the data, therefore, expensive. In addition, time consuming in term of sample preparation and data collection and finally difficult to be adapted for in-situ and real time detection analyses (Bala et al., 2017a; P. Kumar et al., 2015; Peng et al., 2013; Songa & Okonkwo, 2016).

Colorimetric detection methods that uses metal nanoparticles as a sensor array offer a fast, an economical and relatively high sensitivity detection, has been proposed to be a promising method to be exploited to overcome the conventional technique limitations (Bala et al., 2015a; Wang et al., 2016a).

Gold nanoparticles (AuNPs) based colorimetric were most studied for detection of OPs. AuNPs or colloidal gold, usually with particle size between 1 nm to 100 nm have unique characteristics that make it beneficial for colorimetric method (G. Liu et al., 2018). AuNPs showed distinct colour changes that enable easy readout resulted from induced aggregation depending on their size and shape (Dheyab et al., 2021; Du et al., 2014). In addition, the aggregation corresponds with surface plasmon band shift in the visible region that easily noticeable by ultra-violet visible spectrophotometer (Govindaraju et al., 2015; Kim et al., 2019; Yeh et al., 2014; Yue et al., 2016). Several advantages of AuNPs an ideal nanoprobe for sensing include high stability (MA et al., 2018), easy preparation, surface modification and functionalisation (Jamkhande et al., 2019), high molar extinction coefficient (Amanulla et al., 2017; Xi et al., 2017), good biocompatibility (Lee et al., 2018) and low toxicity (Capek, 2017; Enea et al., 2020). Nevertheless, AuNPs based colorimetric detection rests on the lack of selectivity towards analyte. Recent research discussed the OPs specific aptamer (Apt) that acts as the recognition element (Bala et al., 2015a; D.-L. Liu et al., 2019; Wang et al., 2016a, 2016b).

Apt base AuNPs have been studied for a development an efficient gold nanoparticle-based sensor for detection of OPs. Detection selectivity was enhanced by aptamer coil formation which trapped the specific analyte in it (Bala et al., 2017b, 2015a). Several studies induced metal ion to the aptamer-based sensor to further enhance detection capability (Yuan et al., 2016; Zhengbo et al., 2014). Formation of stable guanine quadruplex (GQ) structure reduced nonspecific binding with analytes and later improved detection and selectivity of aptamer based AuNPs sensor (Kumar, 2020; Phopin & Tantimongcolwat, 2020).

Colorimetric detection using AuNPs based sensor produced distinct colour change from red to purple. Several studies implied naked eyes readout in their colorimetric identification (Bai et al., 2015; Bala et al., 2015b; Fahimi-Kashani & Hormozi-Nezhad, 2016; Li et al., 2011; Xu et al., 2011). However, there were some drawbacks of naked eyes readout, such as the existence of subjectivity error which mainly influence by the observer's inconsistencies from manual interpretation (Fan et al., 2021; Sankar et al., 2020) and unreliable as it only give qualitative information (Dutta & Nath, 2017). The use of image processing technique could replace naked eyes read out as it can eliminate subjective error and were able to precisely measure and quantify from the resulting colour change of AuNPs sensor.

In this study, rapid, sensitive, and selective apt based gold nanoparticles (AuNPs) sensor assisted with image processing technique for colorimetric detection of Ac were established. AuNPs suspension were prepared via two different reduction techniques. The sensitivity of detection towards Ac using prepared AuNPs suspension were compared to determine most sensitive suspension for the analysis. The optimum detection parameters were identified and validated. Finally, the selectivity and employability of the optimised detection parameter were tested. Image processing

technique was employed for better quantification and precision of colorimetric detection towards Ac.

1.2 Problem Statement and Research Motivation

The techniques used to accurately determine OPs are usually bulky, time consuming and costly as they used instruments to determine the concentrations of OP pesticides and nerve agents. The gold nanoparticle (AuNP) colourimetric assay is utilised for rapid detection method because it is easy to operate and obtain the results. AuNPs colour change to dark purple upon aggregation can be used in The colourimetric sensing and observed by naked eye even for the concentration that is as low as a few nM levels, thus the AuNPs-based colourimetric method enable highly sensitive and simple detection. This approach has been applied for screening the enzyme activity and measuring the concentrations of nucleic acid, proteins, metal ions and other small molecules. However, the results interpretation of AuNPs-based colourimetric method by naked eye is less accurate as it is operator dependent. The accuracy of the colourimetric method can be improved by incoporating the image processing technique. In addition, to improve the selectivity of the detection, DNA Apt can be utilised for specific detection of OPs. Apt is DNA or RNA sequence selected in vitro from oligonucleotides as specific target molecules. They exhibit competitive advantages such as remarkable target specificity, ease of synthesis, tightbinding capability, chemical stability, and chemical modification flexibility for labelling or favorable immobilisation.