DETERMINING ZONE RADIUS OF ZONE ROUTING PROTOCOL BY EMPLOYING RECURRENT NEURAL NETWORK IN THE 5G WIRELESS NETWORK

FADLI SIRAIT

DOCTOR OF PHILOSOPHY (ELECTRICAL AND ELECTRONIC ENGINEERING)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2023

DETERMINING ZONE RADIUS OF ZONE ROUTING PROTOCOL BY EMPLOYING RECURRENT NEURAL NETWORK IN THE 5G WIRELESS NETWORK

FADLI SIRAIT

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Doctor of Philosophy (Electrical and Electronic Engineering)

2023

ABSTRACT

In addressing the imperatives of 5G wireless networks, the development of network infrastructure capable of accommodating connectivity demands across diverse innovative technologies while upholding high-quality network standards becomes utmost important. In this quest, the selection of an appropriate network architecture, given the need to foster dynamic, self-organizing networks. This study employs a wireless mesh network (WMN) as the foundational network infrastructure due to its adaptability in evolving environmental conditions. Furthermore, the incorporation of unlicensed spectrum harmonious with 5G New Radio, as outlined in 3GPP Release 16, is enacted. In the quest to formulate an efficacious routing protocol capable of exercising traffic control in the face of escalated mobile data utilization, it is essential to ensure Quality of Service (QoS) for end users while optimizing resource efficiency. The Zone Routing Protocol (ZRP) is adopted to cater to the multifarious challenges encountered by WMNs, encompassing the constant flux of network topology, power transmission intricacies, and asymmetrical connections. Notably, the efficacy of ZRP is intertwined with the zone radius parameter, necessitating a dependable approach to its determination. In Addressing this, the proposed approach introduces the long short-term memory recurrent neural network (LSTM-RNN) algorithm. This algorithm empowers ZRP to dynamically adjust the zone radius value in accordance with network performance metrics routing overhead, energy consumption, throughput, and user usage. A dataset comprising these input metrics is partitioned into training and testing subsets, aiding the algorithm in predicting the optimal zone radius value. The efficacy of this methodology is scrutinized in both static and mobile node environments. In terms of network capacity, a bandwidth of 300 Mbps, aligning with the requisites of 5G wireless network technology, is employed. The comparative evaluation of the proposed LSTM-RNN ZRP against conventional ZRP is conducted on the basis of network performance and performance measurement. The zone radius values derived for static nodes fall within the range of 2-6 for the proposed approach and 2-7 for conventional ZRP. Similarly, for both static and mobile node environments, the range of zone radius values spans 1-7 for both algorithms. Analysing the algorithm's performance metrics, including mean square error, error histogram, regression values, and time series response, affirms its effectiveness. Moreover, the network performance evaluation showcases distinctive trends. Notably, LSTM-RNN ZRP demonstrates enhanced throughput and diminished routing overhead and energy consumption compared to conventional ZRP, underlining its efficiency. The number of users reached by nodes is also higher with LSTM-RNN ZRP, elucidating its superiority in user engagement. The novelty of this research lies in the algorithm's operation within an unlicensed spectrum with a bandwidth capacity of 300 Mbps, congruent with the parameters of 5G New Radio in 3GPP Release 16.

ABSTRAK

Untuk menangani keperluan rangkaian tanpa wayar 5G, pembangunan infrastruktur rangkaian yang mampu menampung permintaan ketersambungan merentasi pelbagai teknologi inovatif sambil mengekalkan standard rangkaian yang berkualiti tinggi menjadi penting. Dalam usaha ini, pemilihan senibina rangkaian yang sesuai, dengan mengambil kira keperluan untuk menggalakkan rangkaian yang bersifat dinamik dan mampu mengatur diri, adalah sangat kritikal. Kajian ini menggunakan rangkaian jaringan wayarles (WMN) sebagai infrastruktur rangkaian asas kerana kebolehsuaiannya terhadap keadaan persekitaran yang berubah-ubah. Tambahan pula, penggabungan spektrum tidak berlesen yang harmoni dengan Radio Baharu 5G, seperti yang digariskan dalam Keluaran 3GPP 16, digubal. Dalam usaha untuk merumuskan protokol penghalaan yang berkesan yang mampu melaksanakan kawalan trafik dalam menghadapi peningkatan penggunaan data mudah alih, adalah penting untuk memastikan Kualiti Perkhidmatan (QoS) untuk pengguna akhir sambil mengoptimumkan kecekapan sumber. Protokol Penghalaan Zon (ZRP) diguna pakai untuk menampung pelbagai cabaran yang dihadapi oleh WMN, merangkumi fluks berterusan topologi rangkaian, selok-belok penghantaran kuasa dan sambungan tidak simetri. Terutama sekali, keberkesanan ZRP berkait rapat dengan parameter jejari zon, yang memerlukan pendekatan yang boleh dipercayai untuk penentuannya. Untuk menangani perkara ini, pendekatan yang dicadangkan memperkenalkan algoritma rangkaian saraf berulang jangka pendek (LSTM-RNN) memori jangka pendek. Algoritma ini memperkasakan ZRP untuk melaraskan nilai jejari zon secara dinamik mengikut metrik prestasi rangkaian-overhed penghalaan, penggunaan tenaga, pemprosesan dan penglibatan pengguna. Set data yang terdiri

daripada metrik input ini dibahagikan kepada subset latihan dan ujian, membantu algoritma dalam meramalkan nilai jejari zon optimum. Keberkesanan metodologi ini diteliti dalam kedua-dua persekitaran nod statik dan mudah alih. Dari segi kapasiti rangkaian, lebar jalur 300 Mbps, sejajar dengan keperluan teknologi rangkaian wayarles 5G, digunakan. Penilaian perbandingan LSTM-RNN ZRP yang dicadangkan terhadap ZRP konvensional dijalankan berdasarkan prestasi rangkaian dan pengukuran prestasi. Nilai jejari zon yang diperolehi untuk nod statik berada dalam julat 2-6 untuk pendekatan yang dicadangkan dan 2-7 untuk ZRP konvensional. Begitu juga, untuk kedua-dua persekitaran nod statik dan mudah alih, julat nilai jejari zon menjangkau 1-7 untuk keduadua algoritma. Menganalisis metrik prestasi algoritma, termasuk ralat min kuasa dua, histogram ralat, nilai regresi dan tindak balas siri masa, mengesahkan keberkesanannya. Selain itu, penilaian prestasi rangkaian mempamerkan trend tersendiri. Terutama sekali, LSTM-RNN ZRP menunjukkan daya pemprosesan yang dipertingkatkan dan overhed penghalaan yang berkurangan serta penggunaan tenaga berbanding ZRP konvensional, menggariskan kecekapannya. Bilangan pengguna yang dicapai oleh nod juga lebih tinggi dengan LSTM-RNN ZRP, menjelaskan keunggulannya dalam penglibatan pengguna. Kebaharuan penyelidikan ini terletak pada operasi algoritma dalam spektrum tidak berlesen dengan kapasiti lebar jalur 300 Mbps, selaras dengan parameter Radio Baharu 5G dalam Keluaran 3GPP 16.

ACKNOWLEDGEMENTS

I wish to thank to Allah S.W.T for giving me the opportunity to embark on my PhD and for completing this long and challenging journey successfully.

My gratitude and thanks to my supervisor, Associate Professor Dr. Mohd Taufik Bin Jusoh @ Tajudin for his critics, suggestions, and encouragements in improving this research. My utmost gratitude also goes to my co-Supervisor, Associate Professor Dr. Muhamad Faiz Bin Md Din, and Profesor. Ir. Dr. Kaharudin Dimyati for supports and guidance throughout this research.

I would like to thank to my colleagues, friends and participants for helping me with this research.

Finally, dearest gratitude also goes to my son, my daughter, and my wife for their support, motivation, patience, and love. I am eternally grateful to my parents and the whole family.

APPROVAL

The Examination Committee has met on 9th Mei 2023 to conduct the final examination of Fadli Sirait on his degree thesis entitled "Determining Zone Radius of Zone Routing Protocol by Employing Recurrent Neural Network in the 5G Wireless Network".

The committee recommend that the student be awarded the of Doctor of Philosophy (Electrical and Electronic Engineering).

Members of the Examination Committee were as follows.

Prof. Dr. Mohd Taufiq Bin Ishak

Faculty of Engineering University Pertahanan Nasional Malaysia (Chairman)

Kol. Prof. Dr. Khairol Amali Bin Ahmad (bersara)

Faculty of Engineering University Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Dr. Mohamad Yusof Bin Alias

Faculty of Engineering Multi Media University (External Examiner)

Prof. Dr. Mohd Fadlee A Rashid

Faculty of Engineering University Putra Malaysia (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy (Electrical and Electronic Engineering). The members of the Supervisory Committee were as follows.

Associate Professor Dr. Mohd Taufik Bin Jusoh @ Tajudin

Faculty of Engineering Universiti Pertahanan Nasional Malaysia

(Main Supervisor)

Associate Professor Dr. Muhamad Faiz Bin Md Din

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Professor. Ir. Dr. Kaharudin Bin Dimyati

Faculty of Engineering

University of Malaya

(Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Fadli Sirait
Date of birth	: 20 May 1976
Title	: Determining Zone Radius of Zone Routing Protocol by Employing Recurrent Neural Network in the 5G Wireless Network
Academic session	: 2017/2018

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL	Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

Click here to enter text.

IC/Passport No.

Click here to enter text.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

			Page
ABSTRACT			ii
ABSTRAK			iv
ACKNOWLEI	OGMENT	S	vi
APPROVAL			vii
DECLARATIO	DN		ix
TABLE OF CO	DNTENTS	5	Х
LIST OF TAB	LES		xiii
LIST OF FIGU	IRES		xiv
LIST OF ABBI	REVIATI	ONS	xviii
LIST OF SYM	BOLS		XX
LIST OF APPE	ENDICES		xxi
CHAPTER 1	INTROI	DUCTION	
	1.1	Background	1
	1.2	Problem Statement	6
	1.3	Objectives	9
	1.4	Research Scope	10
	1.5	Significant of Research	11
	1.6	Thesis Outline	11
CHAPTER 2	LITERA	ATURE REVIEW	
	2.1	Introduction	13
	2.2	5G Standard Development in 3GPP	16
	2.3	Wireless Networks	18
	2.3.1	Mobile Ad-Hoc Network (MANET)	19
	2.3.2	Wireless Sensor Network (WSN)	20
	2.3.3	Wireless Mesh Network (WMN)	22
	2.3.3.1	Infrastructure/Backbone WMN	23
	2.3.3.2	Client WMN	23
	2.3.3.3	Hybrid WMN	23
	2.3.3.4	Vehicular Ad-Hoc Network (VANET)	24
	2.4	Routing Protocol in Ad-Hoc Networks	25
	2.4.1	Proactive Routing Protocols	26
	2.4.2	Reactive Routing Protocols	28
	2.4.3	Hybrid Routing Protocols	29
	2.4.3.1	Zone Routing Protocol (ZRP)	30
	2.4.3.1.1	Intra-Zone Routing Protocol (IARP)	31
	2.4.3.1.2	Inter-Zone Routing Protocol (IERP)	32
	2.4.3.1.3	Border Routing Protocol (BRP)	32
	2.5	Machine Learning	34
	2.5.1	Supervised Machine Learning	36
	2.5.2	Unsupervised Machine Learning	37
	2.5.3	Reinforcement Learning	40
		x	

	2.6	Deep Learning	41
	2.7	Deep Learning for Wireless Networks Development	41
	2.8	Summary	44
CHAPTER 3	RESEA	ARCH METHODOLOGY	
	3.1	Introduction	46
	3.2	Design and Development	47
	3.2.1	Proposed Model	48
	3.2.2	Development of Wireless Mesh Network (WMN)	51
	- · ·	Infrastructure	
	3.2.3	Development of Zone Radius Protocol (ZRP)	53
	3.2.4	Development of LSTM-RNN	56
	325	Optimization Process of ZRP	59
	3251	Neural Networks	59
	3.2.3.1 3.2.5.2	Neuron	60
	3.2.3.2	Learning	62
	3.2.3.3	Leanning Decurrent Neural Networks	66
	3.2.3.4	1 Structure	66
	3.2.3.4.		69
	5.2.5.4. 2.2.5.4	2 Learning 2 The Mariaking Cardiant Dashbara	00 60
	3.2.5.4.	3 The vanishing Gradient Problem	09 70
	3.2.5.4.	4 Long Short-Term Memory Neural Networks	70
	3.2.5.4.	5 Hidden Unit	70
	3.3	Simulation Setup	72
	3.4	Performance Metrics	73
	3.5	Summary	75
CHAPTER 4	RESUI	LTS AND DISCUSSIONS	
	4.1	Introduction	76
	4.2	Performance Evaluation of the Algorithm	77
	4.2.1	Mean Square Error (MSE)	77
	4.2.2	Training State	80
	4.2 3	Error Histogram (Histogram Deviation)	84
	4.2.4	Regression	86
	4.2.5	Time Series Response	88
	4.2.6	Auto Correlation	90
	4.3	Performance Evaluation of Network Performance	92
	4.3.1	Throughput	94
	4.3.2	Routing Overhead	97
	4.3.3	Energy Consumption	100
	4.3.4	User usage	102
	4.3.5	Relationship Between Energy Consumption and	104
	•••••	.Routing Overhead	
	4.3.6	Relationship Between Routing Overhead and	106
		Throughput	-
	4.3.7	Relationship Between Routing Overhead and User	108
	1.5.7	Usage	100
	438	Relationship Between Energy Consumption and	110
	1.5.0	Throughput	

	4.3.9	Relationship Between Energy Consumption and	112
	User	Usage	
	4.3.10	Relationship Between User Usage and Throughput	115
	4.4	Summary	117
CHAPTER 5	CONC	LUSION AND RECOMMENDATIONS	
	5.1	Conclusions	122
	5.2	Future Works	125
REFERENCES			129
APPENDIC			
A. MATLAB S	Scripts		142
BIODATA OF S	STUDE	NT	149
LIST OF PUBL	ICATI	ONS	150

LIST OF TABLES

Table No.	Title	Page
Table 2.1	Types of Wi-Fi Standards	19
Table 4.1	The LSTM-RNN performance evaluation in a static node environment and a mobile node environment	118
Table 4.2	The range of Zone Radius values for all scenarios of the simulation	119
Table 4.3	Relationship of parameter performance of the network to radius values for all scenarios of the simulation	119

LIST OF FIGURES

Figure No.	Title	Page
Figure 2.1	The growth of the wireless telecommunication form $1G$ to $6G$	13
Figure 2.2	A general of the 5G network architecture	16
Figure 2.3	Classification of ad-hoc networks	18
Figure 2.4	Mobile ad-hoc network architecture	20
Figure 2.5	WSN application architecture design	21
Figure 2.6	Infrastructure/backbone WMNs	22
Figure 2.7	Infrastructure of hybrid WMNs	24
Figure 2.8	General architecture of VANET	25
Figure 2.9	Classification of ad-hoc routing protocols	26
Figure 2.10	Example of proactive routing protocol	27
Figure 2.11	Example of reactive routing protocol in AODV	29
Figure 2.12	Example of ZRP with zone radius R=2	30
Figure 2.13	Architecture of ZRP	31
Figure 2.14	IERP searching process by using BRP	34
Figure 2.15	Machine learning category	35
Figure 2.16	Workflow of supervised learning	36
Figure 2.17	Supervised learning	37
Figure 2.18	Workflow of unsupervised learning	38
Figure 2.19	Unsupervised learning	39
Figure 2.20	Reinforcement of learning mechanism	40

Figure 2.21	Wireless network taxonomy of deep learning application	43
Figure 3.1	Architecture of LSTM-RNN ZRP	50
Figure 3.2	Single line diagram of network infrastructure system.	52
Figure 3.3	Network infrastructure frequency configuration	53
Figure 3.4	Flow chart of ZRP	55
Figure 3.5	Flow chart of LSTM-RNN ZRP	58
Figure 3.6	Structure of a simple 3-layer neural network	59
Figure 3.7	Artificial neurone	61
Figure 3.8	A simple containing two input nodes, one output neuron and one node as the error function F	63
Figure 3.9	Recurrent neural network unfolds into three time- steps with a non-sequential output	67
Figure 3.10	Illustration of the sigmoid function	69
Figure 3.11	Hidden unit of LSTMs	70
Figure 4.1	Minimum Square Error (MSE) for static node	78
Figure 4.2	Minimum Square Error (MSE) for mobile node	79
Figure 4.3	Training state for static node environment	81
Figure 4.4	Training state for mobile node environment	83
Figure 4.5	Error histogram for static node environment	84
Figure 4.6	Error histogram for mobile node environment	85
Figure 4.7	Correlation regression for static node environment	86
Figure 4.8	Correlation regression for mobile node environment	87
Figure 4.9	Time series response for static node environment	89
Figure 4.10	Time series response for mobile node environment	90

Figure 4.11	Auto correlation for static node environment	91
Figure 4.12	Auto correlation for mobile node environment	92
Figure 4.13	Schematic of the optimal zone radius area	94
Figure 4.14	Relationship zone radius to throughput using LSTM- RNN ZRP and conventional ZRP for static node	95
Figure 4.15	Relationship zone radius to throughput using LSTM- RNN ZRP and conventional ZRP for mobile node environments	96
Figure 4.16	Relationship zone radius to routing overhead using LSTM-RNN ZRP and conventional ZRP for static node	98
Figure 4.17	Relationship zone radius to routing overhead using LSTM-RNN ZRP and conventional ZRP for mobile node	99
Figure 4.18	Relationship zone radius to energy consumption using LSTM-RNN ZRP and conventional ZRP for static node	101
Figure 4.19	Relationship zone radius to energy consumption using LSTM-RNN ZRP and conventional ZRP for mobile nodes environments	102
Figure 4.20	Relationship zone radius to user usage using LSTM- RNN ZRP and conventional ZRP for static node environments	103
Figure 4.21	Relationship zone radius to user usage using LSTM- RNN ZRP and conventional ZRP for mobile nodes environments	104
Figure 4.22	Relationship energy consumption to routing overhead for static nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	105
Figure 4.23	Relationship energy consumption to routing overhead for mobile nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	106
Figure 4.24	Relationship routing overhead to throughput for static nodes environments (a) conventional ZRP, (b) LSTM-RNN ZRP	107
Figure 4.25	Relationship routing overhead to throughput for mobile nodes environments (a) conventional ZRP, (b) LSTM-RNN ZRP	108
Figure 4.26	Relationship routing overhead to user usage for static nodes environments (a) conventional ZRP, (b) LSTM-RNN ZRP	109

Figure 4.27	Relationship routing overhead to user usage for mobile nodes environments (a) conventional ZRP, (b)	110
	LSTM-RNN ZRP	
Figure 4.28	Relationship energy consumption to throughput for static nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	111
Figure 4.29	Relationship energy consumption to throughput for mobile nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	112
Figure 4.30	Relationship energy consumption to user usage for static nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	113
Figure 4.31	Relationship energy consumption to user usage for mobile nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	114
Figure 4.32	Relationship user usage to throughput for static nodes environments: (a) conventional ZRP, (b) LSTM- RNN ZRP	115
Figure 4.32	Relationship user usage to throughput for mobile nodes environments: (a) conventional ZRP, (b) LSTM-RNN ZRP	117

LIST OF ABBREVIATIONS

eMBB	-	enhanced Mobile Broadband
URLLC	-	Ultra-Reliable Low-Latency
mMTC	-	massive Machine-To-Machine
ITU-R	-	International Telecommunication Union Radio
		Communication sector
5G	-	the Fifth Generation of Wireless Communications
WMN	-	Wireless Mesh Network
MANET	-	Mobile Ad-hoc Network
ZRP	-	Zone Routing Protocol
PDR	-	Packet Delivery Ratio
LSTM-	-	Long Short-Term Memory Recurrent Neural Network
RNN		
GTU	-	Gated Recurrent Unit
LQ	-	Link Quality
WCNs	-	Wireless Community Networks
CNNs	-	Convolutional Neural Networks
DL	-	Deep Learning
AI	-	Artificial Intelligent
QoS	-	Quality of Service
VDTN	-	Vehicular Delay Tolerant Network
DLR+	-	Deep Learning-Based Router
DRL	-	Deep Reinforcement Learning
MDE	-	Mobility, Density, and Energy-Based
ZRP	-	Zone Routing Protocol
NR	-	New Radio
MIMO	-	Multiple-Input Multiple-Output
IMT	-	International Mobile Telecommunication
3GPP	-	3rd Generation Partnership Project
mMTC	-	massive Machine Type Communications

D2D	-	Device-to-Device
IoT	-	Internet of Things
LTE	-	Long Term Evolution
URLLC	-	Ultra-Reliable Low Latency
VANET	-	Vehicular ad-hoc Network
IEEE	-	Institute of Electrical and Electronics Engineers
DSDV	-	destination sequenced distance vector
OLSR	-	Optimized Link State Routing
HSR	-	Hierarchical State Routing
AODV	-	On-demand Distance Vector
IARP	-	Intra-Zone Routing Protocol
IERP	-	Inter-Zone Routing Protocol
NDP	-	Neighbour Discovery Protocol
ICMP	-	Internet Control Message Protocol
BRP	-	Border-cast Resolution Protocol
IP	-	Internet Protocol
ML	-	Machine learning
SVM	-	Support Vector Machines
ECLAT	-	Equivalence Class Transformation
ANN	-	Artificial Neural Network
DNN	-	Deep Neural Networks
CNN	-	Convolutional Neural Networks
ReLUs	-	Rectified Linear Units
CS	-	Core Switch
AP	-	Access Point
RO	-	Routing Overhead
EC	-	Energy Consumption
TH	-	Throughput
UU	-	User Usage
TC	-	Topology Control
MSE	-	Minimum Square Error

LIST OF SYMBOLS

- x_i Input Vector
- y_i Output Vector
- *w_i* Weighted Input
- *b* Bias
- f(x) Activation Function
- S(x) Sigmoid Function
 - *E* Error Function (Loss Function)
- tanh(x) Hyperbolic tanh
 - λ Network Function

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Apendix A

MATLAB Script

CHAPTER 1

INTRODUCTION

1.1 Background

Wireless communication infrastructures have helped several data-hungry applications such as multimedia, online gaming, and streaming high-definition video (Alsharif et al., 2020). Scientists are working to develop a new generation of wireless technology in response to the issue of data-hungry communication systems. At the time of the writing of this report, the 5G communications system as a new generation of mobile communication technology is being deployed all over the world, and it includes features such as enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-to-machine interactions (mMTC) (ITU-R, 2015). As a new generation of mobile communication technology, more advanced technological solutions are necessary to accomplish faster data rates, lower latency, more capacity, and more efficient spectrum utilization than previous generations (Lin et al., 2019). Moreover, it is noteworthy that 3GPP Release 16 has delineated the specifications for 5G New Radio (5G NR), a significant aspect of which pertains to the potential utilization of unlicensed spectrum resources. A fundamental objective of 5G NR is to afford mobile network

operators an expanded spectrum landscape, thereby enhancing their choices for the deployment of 5G network technology.

In this study, it is imperative to delineate that the network infrastructure being examined assumes the configuration of a Wireless Mesh Network (WMN). The primary objective of implementing a Wireless Mesh Network (WMN) is to provide a resilient and high-capacity method of network access to a large user population. This entails creating a reliable and efficient network infrastructure capable of serving a significant number of users while maintaining robust connectivity. (Chaitany et al., 2018). The mesh network architecture entails three essential components, namely, network gateways, access points represented by mesh routers, and the mobile nodes functioning as mesh clients. Within the domain of WMN, various salient attributes come to the fore, encompassing the shared nature of the wireless communication medium, the coexistence of both static and mobile nodes, and the intricate mesh of diverse pathways linking source and destination nodes. It is noteworthy that these inherent characteristics introduce a formidable complexity in the realm of traffic management, particularly within the context of a 5G wireless system, owing to the escalating proliferation of nodes generating substantial volumes of data (Hemalatha & Mercy Shalinie, 2019). Consequently, the imperatives for the effective control of network traffic, as exemplified by the formulation of adept routing algorithms, are progressively assuming heightened significance, driven by the ongoing evolution of wireless networks towards the next generation (Tang et al., 2018).

The procedure of ascertaining the optimal pathways for transmitting data within a network is denoted as routing (Benni & Manvi, 2017a). In order to deliver a data packet

from its source to its destination, there is a need to employ a particular routing algorithm, the protocol, which is defined as the collection of rules (Arya et al., 2022). The routing protocol needs to be equipped to deal with the increasing level of node mobility, which often and unpredictably alters the network architecture. Routing protocols based on route discovery are classified into three categories: proactive, reactive, and hybrid (Joy & Dudhe, 2021). Proactive routing protocols are commonly referred to as table-driven protocols due to their characteristic dissemination of routing information to all nodes within the network. In contrast, reactive protocols fall under the category of tableless routing protocols, primarily because they establish routes solely in response to specific demands, leading to a potentially prolonged route discovery process. In the context of a WMN environment, the decision regarding the adoption of either proactive or reactive routing protocols necessitates a comprehensive evaluation of the network's inherent attributes, traffic dynamics, and the precise requisites imposed by the applications operating within the network infrastructure.

The Zone Routing Protocol (ZRP) is a routing protocol that combines the benefits of proactive and reactive routing by maintaining an up-to-date topological map of a zone centered on each node, and within the zone, routes are available immediately; However, for destinations outside the zone, ZRP uses a route discovery method that takes advantage of the zones' local routing information. The connection establishment time can be reduced by using proactive routing inside a limited zone. The zone radius is the most important element that affects ZRP efficiency; the value of the zone radius determines whether ZRP uses proactive or reactive routing (Beijar, 2002). Determining the appropriate zone radius can increase protocol performance by reducing control traffic.