A STUDY OF Sn-Ag-Cu SOLDER INTERCONNECTION BEHAVIOUR UNDER GAMMA RADIATION EXPOSURE

MUHAMMAD NUR HISYAM BIN ROSMAN

MASTER OF SCIENCE (PHYSICS)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2024

A STUDY OF Sn-Ag-Cu SOLDER INTERCONNECTION BEHAVIOUR UNDER GAMMA RADIATION EXPOSURE

MUHAMMAD NUR HISYAM BIN ROSMAN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science (Physics)

ABSTRACT

The resilience of microelectronic packaging to gamma radiation is a crucial factor in solder joint evaluation due to its impact on the reliability of electronics within radiation-prone environments. This study focused tin-silver on copper (Sn96.5Ag3.0Cu0.5; SAC305) solder joints durability due to extreme gamma radiation environment. The SAC305 solder were exposed to gamma radiation with doses ranging from 5 to 50000 Gy. The evolution of the microstructure, intermetallic compound layer growth, crystallographic structure of solder alloy and behaviour of micromechanical properties of SAC305 solder joint due to gamma radiation exposure was investigated. The microstructure and IMC layer images were captured using optical microscope and then analysed by using ImageJ software. The micromechanical properties of solder joint such as the hardness, reduced modulus and creep behaviour was determined using nanoindentation testing and analysed using Oliver-Pharr Method. As the gamma radiation dose increased, the IMC layer thickness increases due to heat-induced coarsening behaviour. The XRD results show the presence of the β-Sn, Cu₆Sn₅ and Ag₃Sn phases. Micromechanical properties obtained from nanoindentation test indicated that the occurrence of wavy-pattern on the load-depth (P-h) curve. As radiation dose increased, the SAC305 solder transition from elastic to plastic. For the 0 Gy of SAC305 solder, the hardness and reduced modulus values were determined to be 0.26 GPa and 66.5 GPa, respectively. Prolonged exposure to gamma radiation leads to the coarsening of Ag₃Sn, diminishing the strengthening effect of the compound and increasing dislocation mobility. The eutectic phase area showed a parallel trend to the hardness value obtained. Overall, gamma radiation significantly

impacts microstructure, mechanical properties, and solder joint performance. Consideration of gamma radiation effects is essential in electronic package design for reliable operation in radiation-prone environments.

ABSTRAK

Ketahanan pempakejan mikroelektronik terhadap sinaran gama adalah faktor penting dalam penilaian sambungan pateri kerana kesannya terhadap kebolehharapan elektronik dalam persekitaran yang cenderung kepada sinaran. Kajian ini memberi tumpuan kepada ketahanan sambungan pateri timah-perak-kuprum (Sn96.5Ag3.0Cu0.5; SAC305) terhadap persekitaran gama yang ekstrem. Sambungan pateri SAC305 telah terdedah kepada sinar gama dengan dos dari 5 hingga 50000 Gy. Evolusi mikrostruktur, pertumbuhan lapisan sebatian antara logam (IMC), struktur kristalografi aloi, dan tingkah laku sifat-sifat mikromekanikal sambungan pateri SAC305 disebabkan pendedahan kepada sinar gama telah diselidiki. Mikrostruktur dan imej lapisan IMC dicerap menggunakan mikroskop optik dan kemudian dianalisis dengan menggunakan perisian ImageJ. Sifat-sifat mikromekanikal sambungan pateri seperti kekerasan, modulus terkurang, dan rayapan ditentukan menggunakan ujian pelekukan nano dan dianalisis menggunakan kaedah Oliver-Pharr. Dengan peningkatan dos sinar gama, ketebalan lapisan IMC meningkat disebabkan oleh kelakuan pelembutan akibat haba. Keputusan XRD menunjukkan kehadiran fasa β-Sn, Cu₆Sn₅, dan Ag₃Sn. Sifat-sifat mikromekanikal yang diperoleh daripada ujian pelekukan nano menunjukkan kehadiran corak bergelombang pada lengkung bebankedalaman (P-h). Dengan peningkatan dos radiasi, sambungan pateri SAC305 berubah dari keadaan elastik kepada plastik. Bagi sambungan pateri SAC305 kawalan, nilai kekerasan dan modulus terkurang ditentukan masing-masing adalah 0.26 GPa dan 66.5 GPa. Pendedahan yang berpanjangan kepada sinar gama menyebabkan pelembutan Ag₃Sn, mengurangkan kesan penguatannya dan meningkatkan mobiliti kehelan. Kawasan fasa eutektik menunjukkan trend yang selari dengan nilai kekerasan yang diperoleh. Secara keseluruhan, sinaran gama secara signifikan mempengaruhi mikrostruktur, sifat-sifat mekanikal, dan prestasi sambungan pateri. Pertimbangan kesan sinar gama adalah penting dalam reka bentuk pembungkusan elektronik untuk operasi yang boleh dipercayai dalam persekitaran cenderung radiasi.

ACKNOWLEDGEMENTS

In the Name of Allah, the Beneficent, the Merciful.

First praise is to Allah, the Almighty, on whom ultimately we depend for sustenance and guidance. Second, my sincere appreciation goes to my supervisor Prof. Madya Dr. Wan Yusmawati binti Wan Yusoff, whose guidance, careful reading, and constructive comments were invaluable. Her timely and efficient contribution helped shape this thesis into its final form, and I express my sincerest appreciation for her assistance in any way that I may have asked. I also would like to thank my co-supervisors; Prof. Madya Dr. Mohamad Faizal bin Abdullah, Prof. Madya Ts. Dr. Nor Azlian binti Abdul Manaf and Prof. Madya Dr. Che Azurahanim binti Che Abdullah for their constant support and availability, provided throughout my time as their student. I also would like to thank Kementerian Pengajian Tinggi and Universiti Pertahanan Nasional Malaysia for providing the financial support needed along my master journey.

Finally, I wholeheartedly give my thanks to all of my family members especially my father for their continued love, belief and support, for without him, it would have been impossible for me to finish my time as a master student. Also, to my late mother who was always supportive and encouraged me to be a better person in life. May Allah S.W.T reciprocate the kindness of all the parties that are directly and indirectly involved.

The accomplishment of my master's degree thesis is not only a milestone in my life but also a starting point from which I can aim to fly higher in the future. May this work be a source of benefit and contribute positively to the knowledge and understanding of all who read it.

APPROVAL

The Examination Committee has met on **12 July 2024** to conduct the final examination of **Muhammad Nur Hisyam Bin Rosman** on his degree thesis entitled **'A Study Of Solder Interconnection Behaviour Under Gamma Radiation Exposure.'**.

The committee recommends that the student be awarded the of Master of Science (Physics).

Members of the Examination Committee were as follows.

Prof. Madya Dr. Siti Aminah Binti Mohd Noor

Center For Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Chairman)

Prof. Madya Dr. Siti Zulaikha Binti Ngah Demon

Center For Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Madya Dr. Norainiza Binti Saud

Faculty Engineer and Chemistry Universiti Malaysia Perlis (UniMAP) (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science (Physics)**. The members of the Supervisory Committee were as follows.

Prof. Madya Dr. Wan Yusmawati Wan Yusoff

Faculty of Science and Defence Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Prof. Madya Dr. Mohamad Faizal bin Abdullah

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Prof. Madya Ts. Dr. Nor Azlian binti Abdul Manaf

Faculty of Science and Defence Technology Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Prof. Madya Dr. Che Azurahanim binti Che Abdullah

Institute of Nanoscience and Nanotechnology Universiti Putra Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Muhammad Nur Hisyam Bin Rosman
Date of birth	: 01/01/1995
Title	: A Study of Sn-Ag-Cu Solder Interconnection Behaviour Under Gamma Radiation Exposure

Academic session : 2024/2025

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS

950101145647 IC/Passport No. Prof. Madya Dr. Wan Yusmawati Wan Yusoff **Name of Supervisor/Dean of CGS

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

TTT	ГΤ	Г
	L	

ABSTRACT		ii
ABSTRAK		iv
ACKNOWLED	OGEMENTS	vi
APPROVAL		vii
APPROVAL		viii
DECLARATIC	ON OF THESIS	ix
TABLE OF CO	ONTENTS	Х
LIST OF TABI	LES	xii
LIST OF FIGU	JRES	xiii
LIST OF ABBI	REVIATIONS	xix
LIST OF SYM	BOLS	xxi
CHAPTER 1	INTRODUCTION	23
	1.1 Background 22	3
	1.2 Problem Statement 2:	5
	1.3 Objective 20	6
	1.4 Research Scope 20	6
	1.5 Significant of Research2'	7
CHAPTER 2	LITERATURE REVIEW	29
	2.1 Introduction 29	9
	2.2 Microelectronic Packaging and Interconnection2	9
	2.3 Solder Materials and Soldering Process 3	1
	2.3.1 Lead-free solder 3.	3
	2.3.2 Soldering Process 36	6
	2.4 Interaction of Gamma Radiation and Materials 3	8
	2.5 Effect of Gamma Radiation on Solder42	3
	2.5.1 Microstructure 44	4
	2.5.2 Mechanical Properties 49	9
	2.6 Nanoindentation Approach5	1
CHAPTER 3	RESEARCH METHODOLOGY	56
	3.1 Introduction 50	6
	3.2 Sample Preparation 55	8
	3.2.1 Sn-Ag-Cu 55	8
	3.2.2 Soldering Process 6	1
	3.3 Gamma Radiation Exposure64	4
	3.4 Metallographic Technique 6'	7
	3.4.1 Mounting 6'	7
	3.4.2 Grinding 70	0
	3.4.3 Polishing 7	1

	3.4.4 Etching	72
3.5	Microstructure Observation Using Optical	
	Microscope	74
3.6	Testing and Characterization	76
	3.6.1 Physical Change	76
	3.6.2 Nanoindentation Test	78
3.7	Summary	80
	-	

CHAPTER 4 RESULTS AND DISCUSSIONS 4.1 Results

81

	4.1	Results	81	
	4.2	Soldering Alloy and Soldering Process	82	
	4.3	Physical Characterization of SAC305 Solder	83	
		4.3.1 Microstructure Evolution	83	
		4.3.2 Intermetallic Compound Layer Thickne	ess91	
		4.3.3 X-Ray Diffractometer (XRD)	97	
	4.4	Micromechanical Properties of SAC305	104	
		4.4.1 Load Versus Depth	105	
		4.4.2 Hardness and Reduced Modulus	109	
		4.4.3 Stress Exponent	120	
	4.5	Correlation between Microstructural Behavio	our	
		and Micromechanical Properties	123	
CHAPTER 5	CO	NCLUSION AND RECOMMENDATION	5	128
	5.1	Conclusions	128	
	5.2	Recommendations	129	
REFERENCES				131
BIODATA OF STUDENT			142	
LIST OF PUBLI	CAT	TIONS		143

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Effect of radiation on electronic materials and devices	42
Table 3.1	Exposure Time for Gamma Radiation	66
Table 4.1	Elemental percentage for SAC305 solder sample	86
Table 4.2	Volume fraction percentage and the average size of the near eutectic phase of SAC305 solder	89
Table 4.3	The value of IMC thickness of SAC305	93
Table 4.4	The micromechanical properties of 0 Gy and irradiated SAC solder	109

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Solder joints in single chip and multichip (heterogeneous	
	integration) packaging (Lau & Lee, 2020)	31
Figure 2.2	Types of solder form exist in the industry (Santosh, 2019)	32
Figure 2.3	Sn-Ag-Cu ternary phase diagram (Lehan et. al., 2022)	36
Figure 2.4	Soldering reaction between molten solder and substrate	
	(Vianco, 2017).	37
Figure 2.5	Typical reflow profile for reflow soldering (Tsai, 2012)	38
Figure 2.6	Schematic of atomic displacement damage in a crystalline	
	solid. (a) Atomic displacement event. (b) Simple	39
	radiation-induced defects (vacancy and interstitial)	
	(Maurer et. al., 2008)	
Figure 2.7	The radiation-induced defect mechanism (Ismail. et. al.,	
	2024)	40
Figure 2.8	Solder joint schematic diagram consists of solder bulk or	
	solder matrix, IMC layer and substrate (Guo et. al., 2023)	44
Figure 2.9	Representative of a) SnPb solder microstructure (Vianco	
	et. al., 2006) and b) Sn-Ag-Cu solder microstructure (Li	45
	<i>et. al.</i> , 2020)	

Figure 2.10	Cu ₆ Sn ₅ IMC layer formed at the interfacial Sn-Ag-Cu and	
	Cu substrate (Sayyadi & Naffakh-Moosavy, 2019)	46
Figure 2.11	Examples of micro-voids and microcracks in the solder	
	joint are due to radiation (Guan et. al., 2023)	48
Figure 2.12	Load-displacement nanoindentation curve	54
Figure 2.13	The SEM images of indenter tips commonly used in	
	nanoindentation tests (a) Berkovich (b) Knoop (c) cube-	54
	corner (Fischer-Cripps, 2000)	
Figure 3.1	Methodology Flow Chart	57
Figure 3.2	(a) The SAC305 solder paste, (b) the stencil, (c) the test	
	board, and (d) the squeegee	59
Figure 3.3	Solder paste mixing process	59
Figure 3.4	(a) Stencil process (b) Schematic of stencil printing	60
Figure 3.5	The solder was pasted on the PCB board	61
Figure 3.6	The reflow soldering oven	62
Figure 3.7	The reflow profile	63
Figure 3.8	PCB board inside the reflow oven	63
Figure 3.9	Sawing Machine	64
Figure 3.10	The PCB that has been cut	64
Figure 3.11	Gamma cell gauge	66
Figure 3.12	The Gamma cell radiation chamber	66
Figure 3.13	The PCB piece was inserted vertically into the mould	68

Figure 3.14	Epoxy resin VersoCit-2 liquid and hardener VersoCit-2	
	Powder	68
Figure 3.15	Mixing of epoxy resin and hardener	69
Figure 3.16	Pouring process	69
Figure 3.17	Mounted sample	70
Figure 3.18	Grinder and Polisher machine	71
Figure 3.19	Optical Microscope	74
Figure 3.20	FESEM testing setup	75
Figure 3.21	Schematic diagram of IMC measurement	76
Figure 3.22	The schematic diagram of grain size measurement	77
Figure 3.23	The schematic diagram of Nanotest TM	79
Figure 3.24	Schematic diagram illustrating the location of	
	nanoindentation on the solder	80
Figure 4.1	(a) Solder paste on the top of PCB surface before reflow	
	process (b) Solder on PCB after reflow soldering	82
Figure 4.2	The image of the mapping element of the SAC305 solder	
	sample	83
Figure 4.3	FESEM mapping image of the (a) SAC305, (b) Sn	
	element, (c) Ag element, and (d) Cu element	85
Figure 4.4	EDS Element Spectrum	85
Figure 4.5	Optical microscope images of SAC305 solder under	
	variation doses of gamma radiation 0 Gy, 5 Gy, 50 Gy,	87
	500 Gy, 5000 Gy and 50000 Gy	

Figure 4.6	ImageJ analysis on SAC305 solder microstructure under	
	gamma radiation of (a) 0 Gy, (b) 5 Gy, (c) 50 Gy, (d) 500	88
	Gy (e) 5000 Gy and (f) 50000 Gy	
Figure 4.7	Volume fraction percentage of eutectic phase area versus	
	β-Sn area	88
Figure 4.8	Representative image of FESEM after exposure to	
	gamma radiation shows the occurrence of microcracks on	91
	5000 Gy	
Figure 4.9	The IMC micrograph for (a) 0 Gy, (b) 5 Gy, (c) 50 Gy,	
	(d) 500 Gy, (e) 5000 Gy, and (f) 50000 Gy	92
Figure 4.10	The IMC trace for (a) 0 Gy, (b) 5 Gy, (c) 50 Gy, (d) 500	
	Gy, (e) 5000 Gy, and (f) 50000 Gy	93
Figure 4.11	IMC layer thickness of 0 Gy and irradiated SAC305	
	solder joint	94
Figure 4.12	The percentage of the increment of IMC thickness	94
Figure 4.13	XRD pattern of SAC305 solder joints on selected gamma	
	doses (a) 50000 Gy, (b) 5000 Gy, (c) 500 Gy, (d) 50 Gy,	98
	(e) 5 Gy and (f) 0 Gy	
Figure 4.14	The dislocation density of both 220 and 240 β -Sn peaks	
	under varied gamma radiation dose	99
Figure 4.15	Crystallite size (Å) of both 220 and 240 β -Sn peaks under	
	varied gamma radiation dose	100

Figure 4.16	Dislocation density of both 220 and 240 β -Sn peaks under	
	varied gamma radiation dose	102
Figure 4.17	Lattice strain of both 220 and 240 β -Sn peaks under	
	varied gamma radiation dose	103
Figure 4.18	The indentation position at the centre of the SAC305	
	solder	105
Figure 4.19	<i>P-h</i> curve of indentation of 0 Gy and irradiated SAC305	
	solder	106
Figure 4.20	The wavy curve (oval shape) and the arrow show elastic	
	and plastic	107
Figure 4.21	Hardness of SAC305 solder joint under varied gamma	
	radiation doses	111
Figure 4.22	Illustration of indentation response towards (a) non-	
	irradiated solder joint (b) irradiated solder joint (Wan	114
	Yusoff et. al., 2023)	
Figure 4.23	Reduced modulus of SAC305 solder joint under varied	
	gamma radiation doses	115
Figure 4.24	Maximum depth of SAC305 solder under variation of	
	gamma doses	116
Figure 4.25	Maximum depth versus hardness of SAC305 solder joint	
	under varied gamma radiation doses.	117
Figure 4.26	Hardness values and plastic work of SAC305 solder	
	under variation gamma doses	118

Figure 4.27	Reduced modulus values and elastic work of SAC305			
	solder under variation gamma doses	119		
Figure 4.28	Depth versus dwell time	121		
Figure 4.29	Log Strain versus Log Stress	121		
Figure 4.30	Stress exponent (n) of SAC305 solder joint under varied			
	gamma radiation doses	123		

LIST OF ABBREVIATIONS

Ag	-	Argentum
Au	-	Gold
Au-Sn	-	Gold-Tin
BGA	-	Ball Grid Array
Bi	-	Bismuth
Cd	-	Cadmium
Cu	-	Copper
Co-60	-	Cobalt-60
DSC	-	Differential Scanning Calorimetry
EDS	-	Energy Dispersive X-ray Spectroscopy
EMR	-	Electromagnetic Radiation
FESEM	-	Field Emission Scanning Electron Microscopy
FIB	-	Focussed Ion Beam
Ge	-	Germanium
HCl	-	Hydrochloric acid
hrs	-	hours
HRTEM	-	High-resolution Transmission Electron Microscopy
IMC	-	Intermetallic Compound
In	-	Indium
IPC	-	Institute for Printed Circuits
min	-	minute
PCB	-	Printed Circuit Board
P-h	-	Load-depth
PTH	-	Plated through-hole
Pu	-	Plutonium
Ra	-	Radium
RoHS	-	Restriction of Hazardous Substances
S	-	second

Sb	-	Antimony
SiC	-	Silicon Carbide
SMT	-	Surface Mount Technology
Sn-Ag-Cu, SAC	-	Tin-Silver-Copper
Sn-Cu	-	Tin-Copper
Sn-Pb	-	Tin-Lead
SVPC	-	Solder Value Product Council
TGA	-	Thermogravimetric Analysis
Th	-	Thorium
U	-	Uranium
WEE	-	Waste Electrical and Electronic Equipment Directive
XRD	-	X-Ray Diffraction

LIST OF SYMBOLS

Α	-	dose rate
A_c	-	projected contact area
A_o	-	initial activity
α	-	alpha
β	-	Beta
С	-	speed of light
$^{\circ}C$	-	Celsius
d	-	d-spacing
dh	-	change of displacement
dP	-	change of load
Ε	-	reduced modulus
E_i	-	reduced elastic modulus
E_r	-	initial elastic reduced modulus
е	-	indenter geometry
e+	-	Proton
e-	-	Electron
Η	-	Hardness
h	-	depth
h_c	-	contact depth
h_{f}	-	final displacement
h_s	-	Stiffness displacement
h _{max}	-	maximum depth
hv	-	energy of directional photon
hv'	-	energy of scattering photon
m_0c^2	-	rest mass of electron
n	-	poisson's ratio
Р	-	Load
P _{max}	-	contact depth
S	-	Stiffness

S	-	Second
Т	-	Temperature
t	-	Time
<i>t</i> _{1/2}	-	half life
v	-	Velocity
Vi	-	poisson's ratio for indenter
γ	-	gamma radiation
λ	-	Wavelength
θ	-	Angle
0	-	Degree

CHAPTER 1

INTRODUCTION

1.1 Background

The durability and reliability of interconnection in electronic packaging is very important especially when it is applied to satellites, spacecraft, biomedical or nuclear power devices since this equipment ordinarily interacts with ionizing radiation such as high energy cosmic, neutron and gamma rays. Ionizing radiation has enough energy to alter the properties of the material by breaking its chemical bond will cause degradation and displacement damage. Therefore, the assessment of its mechanical, and physical properties and microstructural study at the atomic level such as dislocation movements and solder interconnection behaviour are vital to prevent the failure in electronic packaging.

Application of microelectronics packages covers almost all areas of application including radiation-related industries such as radiography used in medical and health sciences; and non-destructive testing. According to Arshak *et. al.*, (2004), exposure to ionizing radiation can occur in various occupational environments such as educational institutes, research establishments and medical institutions. Gamma radiation, a form of ionizing radiation, is denoted by γ . This electromagnetic radiation consists of packets of photons, which are massless particles with very high frequencies and very short wavelengths. Yannakopoulos et. al., (2008) mentioned that the effects of radiation on matter could be grouped into atomic displacement, production of impurities and ionization. Ray (2023) reported that electronic solid-state devices experience displacement damage of solder after exposed to radiation. Some of these radiation effects may lead to changes in terms of the physical and chemical properties of the substance. Irradiation on electronic material may degrade the device's performance (Arshak et. al., 2004) and also alter the internal structure of the materials and therefore their mechanical and chemical properties (Stiegler et. al., 1979). Previous studies showed that package material can be affected by gamma radiation (Jalar et. al., 2014; Yusoff et. al., 2011). In satellite sensor applications, microelectronic packages are embedded in sensor devices. These devices may be exposed to high levels of gamma radiation. Sensors may be affected by prolonged exposure to ionizing radiation such as gamma rays. The results from these studies may lead to improvement in material selection and the design of microelectronic packages. Earlier studies have investigated the effects of radiation on the solder joint, microelectronic packages and devices (Wen et. al., 2020; Wang et. al., 2018; Gong et. al., 2017; Arutt et. al., 2016; Jalar et. al., 2012). Yusoff et. al., (2014) found that exposure to Co-60 gamma radiation-induced dislocation of atomic arrangement on gold ball bond. According to Abdul Amir et. al., (2009), the occurrence of atomic displacement on the silicon metal oxide semiconductor due to ionizing radiation has decreased the reliability of the sample. The subthreshold irradiation plays an important role in the microstructure evolution and defects migration on irradiated ceramics (Zinkle and Kinoshita 1997). However, the study on the durability and reliability of interconnect materials especially solder joints (for extraordinary applications) such as