INFLUENCE OF FRACTURE TOUGHNESS ON THE IMPACT PROPERTIES OF CARBON NANOTUBES/ARAMID FIBRE REINFORCED COMPOSITE

WAN MOHD HANIF BIN WAN YA'ACOB

Thesis Submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2015

ABSTRACT

This research was carried out to investigate the relation of the fracture toughness of epoxy/CNT/twaron on the impact properties by dividing into two phases and use design of experiment (DoE) approach. In Phase 1, the effect of parameters such as epoxy viscosity, CNT content, stirring time, stirring speed and sonicating time on fracture toughness of epoxy/CNT composite were studied. The fracture toughness of epoxy/CNT composite was determined by using Single Edge Notch Bending (SENB) and indentation method. The Phase 2 was the continuity of the Phase 1 of the research, which the result will be used to fabricate the sample of epoxy/CNT/twaron composite. The effect of fracture toughness on the energy absorption will be studied by manipulating the CNT loading, number of layers, projectile velocity. The readings of the fracture toughness by using SENB and the indentation method were recorded from 78.764 to 287.092 MPa.mm^{0.5} and 30.06 to 99.23 MPa.mm^{0.5}. From the analysis of variance (ANOVA), it was found that the epoxy viscosity, CNT loading, stirring speed, and sonicating time was the significant parameters, which were affecting on the fracture toughness by using SENB method. Meanwhile, epoxy viscosity, CNT loading and stirring speed were significant parameters for the indentation method. From the analysis, two statistical equations were generated. In Phase 2, the energy absorption was recorded in the range from 47.44 to 303.45 J. From the ANOVA analysis, CNT loading and numbers of layers were the significant parameters which affected the energy absorption of epoxy/CNT/twaron composite. A statistical model was derived.

ABSTRAK

Kajian ini dijalankan untuk mengkaji hubungan antara keliatan patah bagi komposit epoksi/tiub nano karbon (TNK)/twaron ke atas sifat impak. Kajian ini dibahagi kepada dua fasa dan menggunakan pendekatan kaedah reka bentuk eksperiment (RBE). Fasa 1 menumpukan kajian parameter-parameter seperti kelikatan resin epoksi, kandungan TNK, kelajuan mesin pengadun, tempoh masa proses adunan, dan tempoh masa sonikasi. Keliatan patah bahan komposit nano ditentukan melalui kaedah lenturan pada tiga titik dan kaedah lekukan. Fasa 2 merupakan kesinambungan kajian daripada Fasa 1 yang mana keputusan kajian akan digunakan untuk penyediaan panel ujian bagi kajian kesan keliatan patah terhadap penyerapan tenaga semasa impak balistik. Tiga parameter telah dimanipulasi dalam ujian ini iaitu kandungan TNK, bilangan lapisan fiber dan halaju peluru. Keputusan bagi keliatan patah bahan kompositnano menggunakan kaedah lenturan pada tiga titik adalah dari 78.764 sehingga 287.092 MPa.mm^{0.5}. Manakala melalui kaedah lekukan adalah dari 30.06 sehingga 99.23 MPa.mm^{0.5}. Setelah melalui analisa varian (ANOVA), diketahui bahawa kelikatan epoksi, kandungan TNK, kelajuan pengadun dan tempoh masa sonikat mnyumbangkan kesan yang ketara ke atas keliatan patah bahan komposit-nano yang diperolehi melalui kaedah lenturan tiga titik. Manakala bagi kaedah lekukan, keliatan patah dipengaruhi secara ketara oleh kelikatan epoksi, kandungan TNK dan kelajuan pengadun mekanikal. Dua rumus statistik telah diterbitkan melalui analisa tersebut. Bagi penyerapan tenaga oleh epoksi/TNK/twaron semasa impak, penyerapan tenaga telah direkodkan antara 47.44 sehingga 303.45 J. Menurut analisa ANOVA, jumlah TNK dan bilangan lapisan fabrik Twaron adalah parameter yang memberi kesan yang amat ketara keatas

peyerapan tenaga oleh bahan komposit tersebut. Satu model statistik telah terbitkan melalui analisa tersebut.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim. First of all, thank to Allah for giving me the strength to finish my research and report. During my work to finish the project, I face a lot of challenge but He helps and shows me how to complete this task. I would like to take this opportunity to express my sincere appreciation to my project supervisor, Assoc. Prof Dr Risby Sohaimi and co-supervisor, Dr Mazlee Mohd Noor for their supervision, help, guidance and comment through the duration of this project.

Besides that, thank are also extended to all UPNM technicians because guide me how to use the equipment, give some comment and many more when I finish my research. There are also special thank to staff and technician from Material Engineering School, UniMAP and STRIDE Weapon Technology Division because help me and give permission to me to use the equipment there.

Sincere and great thank to all my friends and course mates for their moral support either directly or indirectly for helping me to finish the project.

Finally, my special and deepest appreciation to my beloved parents, Wan Ya'acob Bin Wan Ibrahim and Wan Siti Afifah Binti Wan Ishak and all my families' members who give me moral support, motivation and encouragement.

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science (Mechanical Engineering). The members of the Supervisory Committee were as follows.

Risby Bin Mohd Sohaimi, Phd Associate Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Supervisor)

Mazlee Bin Mohd Noor, Phd

School of Material Engineering Universiti Malaysia Perlis (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA DECLARATION OF THESIS

Author's full name	:	Wan Mohd Hanif Bin Wan Ya'acob
Date of birth	:	03 January 1988
Title	:	Influence of Fracture Toughness on the Impact Properties
		of Carbon Nanotube/Aramide Fibre Reinforced Composite
Academic session	:	Sept 2011 – Aug 2014

I declare that this thesis is classified as:

	CONFIDENTIAL	(Contains confidential information under the Official Secret Act
		1972)
	RESTRICTED	(Contains restricted information as specified by the organization
	_	where research was done)
\checkmark	OPEN ACCESS	I agree that my thesis to be published as online open access

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE OF STUDENT (WAN MOHD HANIF BIN WAN YA'ACOB)

880103-29-5269

IC/PASSPORT NO.

Date: 16/2/2015

SIGNATURE OF SUPERVISOR

NAME OF SUPERVISOR

Date: 16/2/2015

TABLE OF CONTENT

PAGE

TITLE PAGE	i
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGMENT	v
APPROVAL	vi
DECLARATION OF THESIS	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABREVIATION	xviii

CHAPTER

1	INTRODUCTION	
	1.1 Background	1
	1.2 Problem Statement	6
	1.3 Research Objectives	8
	1.4 Scope and Limitation of Study	8
	1.5 Significant of Study	10
	1.6 Outline of Thesis Structure	11
2	LITERATURE REVIEW	
	2.1 Introduction	13
	2.2 Carbon Nanotube	13
	2.3 Epoxy	17
	2.4 Mixing Method to Enhance Carbon Nanotube	18
	Distribution and Dispersion	
	2.5 Parameter Consideration of Carbon Nanotube for	21

Improving the Dispersion	
2.5.1 Carbon Nanotube Content	21
2.5.2 Ultrasonication and Mechanical Stirring Method	23
2.6 General View of Fracture Toughness	28
2.7 Influence of Carbon Nanotubes on Fracture	30
Toughness of Nanocomposite	
2.8 Ballistic Impact Study- The General Review	34
2.9 Factors Influencing the Performance of Ballistic	35
Impact Resistant on Armour Grade Composite	
2.9.1 Composite Thickness	36
2.9.2 Presence of Additional Material in Composite	37
Structure	
2.9.3 Projectile Impact Velocity	38
2.10 Carbon Nanotube as Filler to Enhance Ballistic	39
Impact Resistant for Armour Grade	
Composite	
2.10.1 Effect of Carbon Nanotubes Content on	39
Ballistic Resistant Performance	
2.10.2 Performance of Carbon Nanotube Composite	42
on Energy Absorption and Ballistic Limit	
during Ballistic Impact	
2.11 Summary	44
MATERIALS AND METHODOLOGY	
3.1 Raw Materials	45
3.1.1 Carbon Nanotube	46
3.1.2 Epoxy	46
3.1.3 Twaron Fabric	47
3.2 General View of Experimental Work	48
3.3 Design of Experiment	50
3.4 Phase 1- Effect of Carbon Nanotube on Fracture	51

ix

Toughness

3.4.1	Two-Level, 2 ⁿ Full Factorial Design	54
3.4.2	Parameter and Range Selection	54
3.4.3	Mixing and Sample Preparation Procedures	55
3.4.4	Single Edge Notch Bending (SENB) Test	60
3.4.5	Vickers Indentation Test	61
3.4.6	Scanning Electron Microscopic (SEM)	63
3.4.7	Dynamic Mechanical Analysis (DMA)	64
3.5 Phase 2- Effect of Carbon Nanotube on Ballistic		64
Impa	ct	
3.5.1	Response Surface Method	67
3.5.2	Parameter and Range Selection	68
3.5.3	Sample Fabrication	71
3.5.4	Ballistic Impact Test	72
3.5.4.1. Test Apparatus		73
3.	5.4.2. Testing Procedure	76
3.	5.4.3. Calculation of Energy Absorption	77
3.6 Summary		78

4 **RESULT AND DISCUSSION**

4.1 Fracture Toughness of CNT/Epoxy Composite by	78
Using SENB and Indentation Method	
4.1.1 Fracture Toughness Statistical Model	80
4.1.2 Analysis of Variance (ANOVA)	85
4.1.3 Evaluation of Develop Statistical Model	88
4.1.4 Model Graph	91
4.1.5 Optimization of Fracture Toughness Model	95
4.1.6 Validation of Fracture Toughness	98
4.2 Morphological Analysis	100
4.3 Thermal Analysis of Composite	
4.4 Energy Absorption of Composite	109

4.4.1 Statistical Model of Energy Absorption	111
4.4.2 Analysis of Variance (ANOVA)	114
4.4.3 Evaluation of Develop Statistical Model	116
4.4.4 Model Graph	118
4.4.5 Optimization of Energy Absorption Model	120
4.4.6 Validation for Energy Absorption Model	123
4.5 Influence of Fracture Toughness on the Energy	124
Absorption	
4.6 Summary	128
CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions	129
5.2 Recommendations	132
REFERENCES	133
APPENDICES	146
CURRICULUM VITAE	153

5

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
1.1	Application of nanomaterials in defence	5
2.1	Methods of CNT dispersion (Wang et al., 2003)	19
2.2	Comparison of mechanical data for three different methods of dispersing technique	20
2.3	The using of dispersion methods from different researchers	21
2.4	Parameter of dispersion (Suave et al., 2009)	24
2.5	Stirring and sonication process parameters summary	27
2.6	Comparison different filler on fracture toughness properties	31
2.7	Effect of degassing agent on fracture toughness properties (Yu et al., 2008)	32
3.1	List of material and the manufacturer	45
3.2	Parameter and response of epoxy/CNT mixing	54
3.3	Design matrix for 2^5 full factorial design (32 runs) simulate by Design Expert 8.0 software	56
3.4	Parameter level and response	69
3.5	Experiment design generated by Design Expert software	70
3.6	Technical data of projectile	73
4.1	Fracture toughness of Epoxy/CNT composite by using SENB and indentation method	79
4.2	Parameter and interaction between parameters (a) SENB method (b) Indentation method	82
4.3	ANOVA for fracture toughness analysis as calculated by	86

	Design Expert Software (a) SENB method (b) Indentation method	
4.4	Target values	95
4.5	Solution of the target values	97
4.6	Result of Validation Experiment (a) SENB method (b) Indentation method	99
4.7	ANOVA for energy absorption of epoxy/CNT/Twaron composite	115
4.8	Target values	120
4.9	Solution of target values	122
4.10	Result of Validation Experiment	124

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
1.1	First World War Body Armour Test (US Army, 1918).	3
2.1	Schematic diagram of the CNT structure (Aqel et al., 2012)	14
2.2	Illustration of Carbon Nanotube (Chul Kim, 2011)	14
2.3	Chemical structure of the epoxy	17
2.4	The effect of funtionalized CNT and unfuntionalized CNT on the impact strength (Yaping <i>et al.</i> , 2006)	22
2.5	Tensile strength of 0.5 wt% CNT/epoxy at different sonication duration (Gkikas <i>et al.</i> , 2012)	25
2.6	Configuration for (a) SENB test (b) CT test	28
2.7	Formation of cracking during indentation test: (a) Palmqvist crack system (b) radial (R) and lateral (L) crack system (Szutkowska, 2005)	29
2.8	Fracture toughness of pristine and ozone functionalized CNT (Tang <i>et al.</i> , 2011)	33
2.9	Ballistic limit velocity and energy absorption vs. cross-ply composite thickness (Sabet and Baheshty, 2011)	37
2.10	Percentage improvement of ballistic resistant of CNT/PC nanocomposite (Abdelkader <i>et al.</i> , 2002)	40
2.11	Damage area and percentage of damage after intermediate velocity bullet impact test (Venkatanarayanan & Stanley, 2001)	41
2.12	The effect of CNT on Energy absorbed and Ballistic limit per areal density of Epoxy/Ceramic composite (Saleeken <i>et al.</i> , 2011)	43

2.13	The effect of CNT on Energy absorbed and Ballistic limit of PP/MWCNT composites (Fereidoon <i>et al.</i> , 2011)	43
3.1	Carbon nanotube	46
3.2	Epoxy (a) Low viscosity epoxy (b) High viscosity epoxy	47
3.3	Twaron fabric	48
3.4	Experimental work process	49
3.5	Flow chart of Phase 1	53
3.6	Stirring process	57
3.7	Sonicating process	58
3.8	Degassing process	59
3.9	Sample (a) SENB sample (b) DMA sample	59
3.10	Single Edge Notch Bending (SENB) dimension	61
3.11	Vickers indentation test sample	62
3.12	Scanning Electron Micoscopic equipment	63
3.13	Dynamic Mechanical Analysis sample dimension	64
3.14	Dynamic Mechanical Analysis equipment	64
3.15	Flow chart of the Phase 2	66
3.16	Illustration of the matrices (a) 3^3 design (b) 3 factors Box- Behnken (c) 3 factors composite (Pierlot <i>et. al.</i> , 2008)	68
3.17	Vacuum bagging process	71
3.18	Ballistic impact test set up (United State NIJ Standard 0108.01)	72
3.19	9 mm FMJ RN bullet	73
3.20	(a) Impact point on the testing panel (b) Experimental setup	74

Universal test gun	75
Velocity chronograph	76
Half normal probability plot after selecting the major effects for fracture toughness (a) SENB method (b) Indentation method	81
Pareto Chart of the effect (a) SENB method (b) Indentation method	84
Predicted fracture toughness absorption vs actual (a) SENB method (b) Indentation method	89
Box-Cox Plot for power transform (a) SENB method (b) Indentation method	90
Interaction graph (a) Interaction of A and B on the fracture toughness by using SENB method (b) Interaction of A and B on the fracture toughness by using the indentation method	92
Interaction graph (a) Interaction of C and D on the fracture toughness by using SENB method (b) Interaction of C and D on the fracture toughness by using Indentation method	94
Numerical optimization of fracture toughness	96
Ramps of optimization	98
CNT dispersion (a) Agglomeration region of CNT form in high viscosity epoxy (b) Agglomeration region zoomed at 10 000x magnificent (c) uniformly distributed CNT in low viscosity epoxy	101
Fracture surface of nanocomposite after fracture toughness test (left: low viscosity epoxy, right: high viscosity epoxy) (a) neat epoxy (b) 0.1% CNT (c) 1.0% CNT	104
Plot of storage modulus versus temperature of samples at random parameter	107
Plot of tan δ versus temperature of samples at random parameter	108
Bar graft of glass transition temperature, Tg against sample run	109
	 Velocity chronograph Half normal probability plot after selecting the major effects for fracture toughness (a) SENB method (b) Indentation method Pareto Chart of the effect (a) SENB method (b) Indentation method Predicted fracture toughness absorption vs actual (a) SENB method (b) Indentation method Box-Cox Plot for power transform (a) SENB method (b) Indentation method Interaction graph (a) Interaction of A and B on the fracture toughness by using SENB method (b) Interaction of A and B on the fracture toughness by using SENB method (b) Interaction of A and B on the fracture toughness by using SENB method (b) Interaction of C and D on the fracture toughness by using SENB method (b) Interaction of C and D on the fracture toughness by using Indentation method Numerical optimization of fracture toughness Ramps of optimization CNT dispersion (a) Agglomeration region of CNT form in high viscosity epoxy (b) Agglomeration region zoomed at 10 000x magnificent (c) uniformly distributed CNT in low viscosity epoxy (b) 0.1% CNT (c) 1.0% CNT Plot of storage modulus versus temperature of samples at random parameter

4.14	Impact point (a) Before impact (b) After impact – Front surface (c) After impact – Back surface.	111
4.15	Energy absorption plot (a) Energy absorption Vs CNT loading (b) Energy absorption Vs Number of layer (c) Energy absorption Vs Projectile velocity (d) Energy absorption Vs Sample run	112
4.16	Predicted energy absorption Vs actual energy absorption	117
4.17	Box-Cox plot for power transform	117
4.18	The effect of CNT loading on energy absorption	119
4.19	Effect of layer numbers on energy absorption	119
4.20	Effect of projectile velocity on energy absorption	120
4.21	Desirability contour graph of energy absorption.	123
4.22	Energy absorption at different fracture toughness (a) Low viscosity, 384 ± 3 m/s (b) Medium velocity, 412 ± 3 m/s (c) High velocity, 437 ± 4 m/s.	126

LIST OF ABREVIATIONS

3D	Three dimensions		
a	Crack length		
Adeq	Adequate		
Adj	Adjusted		
ANOVA	Analysis of variance		
ASTM	American Standard of Testing Method		
В	Specimen thickness		
c	Diagonal length		
CNT	Carbon nanotube		
Cps	centipoises		
СТ	Compact tension		
CVD	Chemical vapour deposition		
DMA	Dynamic mechanical analysis		
DoE	Design of experiment		
F	Applied force		
f(x)	Shape factor.		
FMJ RN	Full metal jacket round nose		
H_2SO_4	Sulfuric acid		
HNO ₃	Nitric acid		
$H_{\rm v}$	Vickers hardness		
LBL	Layer by layer		
Li-Ion	Lithium ion		
MWCNT	Multiwall carbon nanotube		

NH ₃	Ammonia
NIJ	National Institute of Justice
NiO	Nickel oxide
Р	Maximum applied load
РР	Polypropylene
Pred	Predicted
Rpm	Rotation per minute
RSM	Response surface method
SEM	Scanning electron microscopic
SENB	Single edge notch bending
W	Specimen width

CHAPTER 1

INTRODUCTION

1.1 Background

Composite is widely used in many applications because of the suitability to use in many conditions and requirements. Combination of variety type of materials in a composite system can serve the specific properties and purpose of high-end application.

As an example, synthetic or natural fibre reinforces polymer. This type of composite system will improve the structure to become high strength and stiffness, resist to corrosion and environment, reduce weight, improve fatigue life and wear resistance, improve the properties of thermal and electrical and reduce the cost and life cycle of production (Zahid, 1997).

As mentioned before, the main nature of composite is to produce materials to fulfil the requirement of a specific product, which is cannot be achieved by single component or system material. The numbers of research and development of composite material needs to increase, because they will cover the diversity of application in many industries. As an example, automotive industries need to produce low weight and high mechanical performance car structure. The low weight car structure is significant affects the fuel consumption. The market price for fuel is increasing from time to time and effect to the consumers. By reducing the weight of car structure, the fuel consumption can be reduced too. So, automotive industries try to improve their product by increasing the usage of composite's part in their car and producing for customers fuel saving cars. Other than automotive application, composite materials use also in defence, aircraft, construction, sport and recreation, electric and electronic, oil and gas and medical application.

Defence application demands the material which has advanced performance and properties such as low weight, good mechanical properties, better fatigue life, durability and flexibility at lower cost. Composite materials are the perfect choice to choose as replacement material for conventional defence materials, especially metals.

In defence application, the protection system is very important. It consists the personal protection (body armour) and protection of mobility unit (vehicle). Actually the protection system, especially for body armour has been use long time ago. In ancient war, the armies protect their body by using metal, animal skin or shell and wood.

First World War body armour test conducted by United States Army's Ordinance Department (US Army, 1918). The body armour was made from chromenickel-steel. Figure 1.1 shows the effect of bullet on the armour. It shows the effect of pistol, (A), rifle, (B), and machine gun, (C). From the observation, the body armours can resist bullet from pistol and rifle from penetrating them. Meanwhile, they cannot withstand the penetration from the machine gun. However, this type of body armour is heavy and unsuitable in battlefield. The army need to a low weight body armour to make sure their movement in battlefield more effective. During World War II, the next-generation bullet proof-jacket (soft body armour) was invented from ballistic nylon (also known as flak jacket). It gives the protection against pistol and rifle bullets.

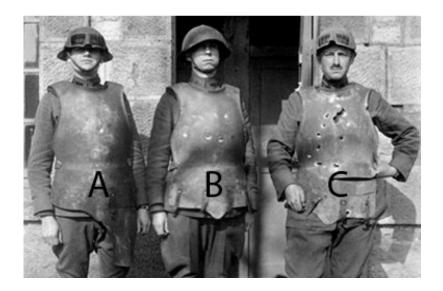


Figure 1.1: First World War Body Armour Test (US Army, 1918).

In the 1965, the first type of aramid, poly paraphenylene terephthalamide (paraaramid) was introduced by DuPont. It was known as Kevlar as the DuPont Company trademark name. Another similar material is Twaron (developed by Teijin Aramid). Aramid is a type of polymer, which consists of carbon, hydrogen, nitrogen and oxygen molecules. Actually, this fabric was used to replace steel belting in vehicle tires. Because of flexibility, high strength and low density properties, it was used to produce bullet-proof jackets.

Aramid is also used to produce armour grade composite. This is because aramid has high modulus and strength characteristic and high capability of energy absorption likes. Armour grade composite generally uses to give maximum protection from ballistic impact and blast. It uses as personal protection (ballistic helmet) and component part for helicopter, light weight armour vehicle, aircraft and etc.

Nowadays, the trend shows numbers of research try to apply nanomaterial into the composite by using variety of types of nanomaterial such as nanoclays, nanometal oxide particles, carbon nanotubes, carbon nanofibres and nanocarbon particles and etc. (Qian and Hinestroza, 2004). Table 1.1 illustrate the using of nanomaterial in defence applications.

Type of	Application	Reference	Year
Nanomaterial			
Nanoclay	Improve ballistic	Ma et al.	2010
	protection for	Ma <i>et al</i> .	2010b
	body armour	Antonio <i>et al</i> .	2011
Carbon black	Radar absorption	Jung-Hoon <i>et al</i> .	2004
nanoparticle	material	Saville et al.	2005
		Habeish et al.	2008
		Folgueras <i>et al</i> .	2009
Nanometal Oxide	Self-cleaning fabric for military	Thilagavathi <i>et</i> <i>al</i> .	2008
	application	Samal <i>et al</i> .	2010
		Rajendran	2010
Carbon nanotube	Renewable	Dillon & Hebben	2001
	energy and	Hui-Ming et al.	2001
	energy sources	Becker & Lampe	2010

Table 1.1: Application of nanomaterials in defence.

The most popular nanomaterial which has been used is carbon nanotube (CNT). The implementation of nanomaterial in composite is a branch of nanotechnology. Nanotechnology may produce the high-end performance products likes armour grade composite. The main factor of the selection CNT as reinforcement material in armour grade composite is CNT is one of the strongest and stiffest materials.

CNT has contributed many benefits in defence technology development. For this application, researchers have studied the potential of CNT and come out with the idea of CNT capability such as the biosensor (Bhattacharya *et al.*, 2001), energy source for military device (Hai-Wei *et al*, 2009) and smart uniform (Thilagavathi *et al.*, 2008).

Recently, many studies were conducted to discover the potential of CNT. In terms of mechanical properties, it may increase the properties of ballistic impact resistant, fracture toughness and reduce the internal stress. This is because CNT has significant properties such as high elastic modulus, exceptional tensile strength; fracture toughness and can reinforce many matrixes like metal, ceramic and polymer to increase stiffness, strength and toughness (Chen *et al.*, 2009). CNT has high strength to weight ratio, high resistant to chemical, which is difficult to oxidize, high surface area and high thermal conductivity (Wei *et al.*, 2010).

1.2 Problem Statements

Owing to their high strength- and stiffness-to-weight ratios, polymer-matrix composites are increasingly being used as structural materials in the personnel protective system (body armour, vehicles and etc.). With respect to their overall performance under ballistic impact conditions, advanced fibre-reinforced polymermatrix composites are generally classified into two main categories: (a) High-strength/ high-stiffness composites (typically based on carbon-fibre reinforcements), which are highly effective in deforming and/or fracturing the incoming projectile while having a very limited ability for absorbing the projectile's kinetic energy; and (b) Highductility/high-toughness advanced composites (typically based on glass or aramid reinforcements) whose properties are optimized with respect to absorb the maximum fraction of the kinetic energy carried by the projectile. The resistance in terms of