

SIMULATION ANALYSIS OF A FOLDABLE CARBON FIBER REINFORCED HONEYCOMB SANDWICH COMPOSITE BRIDGE

AGUSRIL

Thesis submitted to the Centre for Research and Postgraduate Management, Universiti Pertahanan Nasional Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

OCTOBER 2010

DEDICATION

"Especially for ayah and mak, Syamsir and Alm Naimah. My beloved wife and son, Vivi Anggraini and Muhammad Athar Al Rafee". You give me strength to carry on.

ABSTRACT

Portable bridge is very important in the military for mobility. However, it becomes more important nowadays for disaster relief operations. In the early days, military bridges were made from steel causing the weight of the bridge to be huge, thus, need more vehicles to transport the bridge and crane with higher capacity to erect it. Subsequently it will cost more to operate.

Aluminum and metal alloy were introduced to reduce the weight of such structure to overcome these problems. Then new material emerge called composite material, i.e. Carbon Fiber Reinforced Polymer (CFRP) and honeycomb material which is usually used for sandwich structure. CFRP and aluminum honeycomb are being considered to be used as a primary material for the portable bridge. The reason to use the CFRP as a primary material is due to its high strength to weight ratio, thus making it lighter than steel and other alloy. The use of honeycomb is expected will increase the stiffness of bridge beam without additional weight significantly. In this study one layer of CFRP is called as lamina and the stacking of lamina is called as laminate.

Aluminum Honeycomb Hex-Web 5.2-1/4-25(3003) is used as the core in this study, while laminate is used as the skin for sandwich structure of the beam. The laminate is consisting of 31 to 49 plies of lamina, where the lamina thickness is 0.815 mm that produces the laminate thickness from 25 to 40 mm. The thickness of aluminum honeycomb which is used is in the range of 50 to 300 mm that produces sandwich structure thickness from 85 to 340 mm.

Finite Element Analysis (FEA) is used due to unavailability of standard for design of structure using CFRP and honeycomb. Maximum stresses and also the possibility of buckling on the structure have been investigated. Several trials are made to test several lay-up of lamina including use of aluminum honeycomb core to increase stiffness of the member.

The trials produce the maximum stress on the lamina in fiber direction is 104 MPa (compression), while the maximum stress in perpendicular to fiber direction and shear stress are 4.02 MPa (compression), and -7.44 Mpa, respectively.. The use of failure formulations which is shown in the form of graphic shows that the lamina stresses is in allowable range. The maximum stress of Aluminium honeycomb in z-direction is 0 MPa, while the shear stress in y-z and x-z planes are -0.844 Mpa and 1.45 Mpa, respectively. The maximum stresses of honeycomb are lower than the strength of honeycomb itself, it means that the aluminum honeycomb is able to support the load without failure.

From the trials can be concluded that, with proper design Carbon Fiber Reinforced Polymer and Aluminum Honeycomb can take the design load similar to steel and aluminum.

ABSTRAK

Jambatan mudah alih sangat penting dalam bidang ketenteraan untuk tujuan mobiliti. Bagaimanapun, jambatan mudah alih menjadi lebih penting untuk operasi bantuan bencana. Pada awal kegunaannya, jambatan tentera diperbuat daripada keluli menyebabkan jambatan terlalu berat, maka, ia memerlukan lebih banyak kenderaan untuk mengangkut jambatan dan kren dengan kapasiti yang lebih tinggi untuk mendirikannya. Kemudiannya, kos operasi menjadi lebih tinggi.

Aluminium dan aloi logam diperkenalkan untuk mengatasi masalah ini dengan mengurangkan berat struktur jambatan. Kemudian bahan baru muncul dipanggil bahan komposit iaitu gentian karbon diperkuat polimer (CFRP) dan bahan sarang lebah yang biasanya digunakan untuk struktur sandwic. CFRP sedang dipertimbangkan untuk digunakan sebagai bahan utama dalam pembuatan jambatan mudah alih. Ini kerana CFRP mempunyai nisbah kekuatan terhadap berat yang tinggi, membuatkannya lebih ringan daripada keluli dan aloi yang lain. Penggunaan bahan honeycomb diharapkan dapat meningkatkan kekukuhan rasuk jambatan tanpa penambahan berat jambatan secara signifikan. Dalam kajian ini satu lapisan CFRP dipanggil sebagai lamina dan susunan lamina dipanggil sebagai laminate.

Sarang lebah aluminium Hex-Web 5.2-1/4-25(3003) digunakan sebagai teras dalam kajian ini, manakala lamina adalah digunakan sebagai kulit untuk struktur sandwic rasuk. Laminate mengandungi 31 sehingga 49 lapisan lamina, di mana ketebalan setiap lamina ialah 0.815 mm yang menghasilkan ketebalan laminate dari 25 sehingga 40 mm. Ketebalan sarang lebah aluminium yang digunakan adalah berada dalam julat 50 sehingga 300 mm yang menghasilkan ketebalan struktur sandwich dari 85 sehingga 340 mm.

Kaedah elemen terhad digunakan kerana tak ada standard untuk mereka bentuk struktur menggunakan honeycomb dan CFRP. Tekanan maksimum dan juga kebarangkalian pembengkokan pada struktur telah disiasat. Beberapa ujian telah dibuat untuk menguji beberapa '*lay-up*' lamina termasuk penggunaan teras sarang lebah aluminium untuk meningkatkan kekukuhan rasuk.

Ujian-ujian tersebut menghasilkan tekanan maksimum pada lamina dalam arah gentian ialah 104 MPa (mampatan), sementara tekanan maksimum dalam berserenjang dengan arah gentian dan tegasan ricih ialah 4.02 MPa (mampatan), dan -7.44 MPa, masing masing. Penggunaan formula kegagalan yang ditunjukkan dalam bentuk grafik menunjukkan bahawa tekanan pada lamina berada dalam julat yang dibenarkan. Tekanan maksimum pada sarang lebah aluminium dalam arah z ialah 0 MPa, sementara tegasan ricih dalam y-z dan x-z plane ialah -0.844 MPa dan 1.45 MPa, masing-masing. Tekanan maksimum pada sarang lebah aluminium adalah lebih rendah dari pada kekuatan sarang lebah itu sendiri, ini bermakna sarang lebah aluminium mempunyai keupayaan menyokong beban tanpa kegagalan.

Daripada ujian-ujian tersebut dapat disimpulkan bahawa, dengan rekabentuk yang sesuai Carbon Fiber Reinforced Polymer dan Aluminum Honeycomb boleh mengambil beban rekabentuk sama seperti keluli dan aluminium.

ACKNOWLEDGEMENT

My Grateful for Allah SWT.....

The author would extremely grateful to his supervisor, Lt. Col. Assoc. Prof. Ir. Dr. Norazman bin Mohamad Nor for his enthusiastic guidance, invaluable help, and encouragement in all aspects of this thesis. His numerous comments, criticisms and suggestions during the preparation of this thesis are gratefully acknowledged. His patience and availability for any help whenever needed with his heavy workload is appreciated. I am also very thankful to my supervisor for availability of E-science fund grant for supporting the completion of this research.

I would like to thank fellow postgraduate students in Faculty of Engineering for their discussions, support, and social interaction during my study. My appreciation is also extended to all academic and non-academic member of Civil Engineering, for their warm hearted co-operation during my stay in of Universiti Pertahanan Nasional Malaysia. Acknowledgement is not complete without thanking to En.Zawil in UPNM Laboratory for helping either directly or indirectly in my work.

Heartfelt acknowledgements are expressed to my beloved wife "Vivi Anggraini Abdullah". Without her sacrifices, patience, guidance, support, and encouragement in providing my higher education, I may never have overcome this long journey in my studies. A very special thank is offered to my son "Muhammad Athar Al Rafee" for giving me spirit and strength during the difficult times of my study.

I certify that an Examination Committee has met on **31 May 2010** to conduct the final examination of **Agusril** on his degree thesis entitled **'Simulation analysis of a foldable carbon fiber reinforced honeycomb sandwich composite bridge'**. The committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Megat Mohamad Hamdan Bin Megat Ahmad, PhD

Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Risby Bin Mohd Sohaimi, PhD

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Abd Latif Bin Saleh, PhD

Associate Professor Name of Department of Structure and Materials /Faculty of Engineering Universiti Teknologi Malaysia (External Examiner) This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The supervisor was as follows:

Norazman Bin Mohamad Nor, PhD Lt. Col/Associate Professor/Ir. Faculty of Engineering Universiti Pertahanan Nasional Malaysia

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA DECLARATION OF THESIS

Author's full name	:	AGUSR	IL		
Date of birth	:	2 AUGU	JST 1981		
Title	:	SIMUL	ATION ANALYS	IS OF A FOLDAE	BLE CARBON
		FIBER	REINFORCED	HONEYCOMB	SANDWICH

COMPOSITE BRIDGE

Academic Session : 2009/2010

I declare that this thesis is classified as:

	CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
	RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
X	OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Pertahanan Nasional Malaysia reserves the right as follows:

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE

S524276

(PASSPORT NO.)

SIGNATURE OF SUPERVISOR

LT.COL. ASSOC. PROF. IR.. DR. NORAZMAN BIN MOHAMAD NOR NAME OF SUPERVISOR

Date:

Date:

Note : * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

CHAPTER		TITLI	E	PAGE
	DED	ICATION		ii
	ABS	ГКАСТ		iii
	ABS	ГКАК		v
	ACK	NOWLEDGEMENTS		vii
	APP	ROVAL		viii
	DEC	LARATION OF THESIS		X
	TAB	LE OF CONTENTS		xi
	LIST	COF TABLES		XV
	LIST OF FIGURES		xvi	
	LIST OF ABREVIATION			XX
	LIST	COF SYMBOLS		xxi
	LIST	OF APPENDICES		xxii
1	INT	RODUCTION		1
	1.1	Background		1
	1.2	Problem Statement		5
	1.3	Objective of study		7
	1.4	Scope of study		7
	1.5	Significance of study		8
	1.6	Thesis Layout		8

2	LITE	RATU	RE REVIEW	9
	2.1	Introd	uction	9
	2.2	Comp	osite Material	9
		2.2.1	Carbon Fiber	10
		2.2.2	Epoxy Resin (Matrix)	11
		2.2.3	Carbon Fiber Reinforced Polymer (CFRP)	12
	2.3	Honey	ycomb Sandwich Material	14
	2.4	Analy	sis of Lamina	15
		2.4.1	Unidirectional Continuous Fiber 0º Lamina	15
		2.4.2	Unidirectional Continuous Fiber Angle-Ply Lamina	18
		2.4.3	The Specially-Orthotropic Lamina	20
		2.4.4	Transformation of Coordinates	21
	2.5	Analy	sis of Laminate	22
	2.6	Buckl	ing Analysis of Laminates	27
	2.7	Failur	e Theories of Orthotropic Materials (Composite	28
		Mater	ials)	
	2.8	Dynai	nic Analysis	39
		2.8.1	Real Eigenvalue Analysis	40
		2.8.2	Direct Transient Response Analysis	42
		2.8.3 Analy	Damping in Direct Transient Response sis	44
	2.9	Concl	usion	45
3	MAT	ERIAL	S AND METHODOLOGY	46
	3.1	Introd	uction	46
	3.2	Litera	ture Study	50
	3.3	Mater	ials Selection	51
	3.4	Desig	n Loads Concept	54
		3.4.1	Dead Load (D)	55

	3.4.2 Vehicle load (V)	55
	3.4.3 Mud Load (M)	57
	3.4.4 Foot-walk Load (F)	58
	3.4.5 Wind Load (W)	58
	3.4.6 Braking and Acceleration Load (B)	58
	3.4.7 Impact Factor (I)	59
	3.4.8 Snow and Ice load (S)	59
3.5	Load Combinations	59
3.6	Safety Consideration	60
3.7	Loading Arrangement	61
3.8	Modeling and Simulation Concept	62
3.9	Simulation Process	66
3.10	Performance Analysis of Bridge Structure	71
	3.10.1 Failure Analysis	71
	3.10.2 Buckling Analysis	71
	3.10.3 Deflection	72
3.11	Conclusion	73
STRU	JCTURAL ANALYSIS AND DESIGN OF BRIDGE	74
4.1	Introduction	74
4.2	Preliminary Design	74
	4.2.1 Foldable System Design	75
4.3	Finite Element Analysis of the Bridge	77
	4.3.1 Loading Modeling of the Bridge	77
	4.3.2 Boundary constrains modeling of the Bridge	81
4.4	Static Analysis of Bridge	83
	4.4.1 Loading calculation	83
	4.4.2 The Responses of the Bridge	85

4

		4.4.2.1 Maximum Stresses at Layer 1	86
		(Fiber orientation of 90°)	
		4.4.2.2 Maximum Stresses at Layer 2	89
		(Fiber orientation of 0°)	
4.5	Dynai	mic Analysis of Bridge	94
	4.5.1	Loading Calculation	94
	4.5.2	Bridge Dynamic Analysis	95
4.6	Comp	parison between Static and Dynamic Analyses	96
4.7	Failur	e analysis of the bridge beam	98
	4.7.1	Failure analysis of laminate	99
	4.7.2	Failure analysis of honeycomb	101
4.8	The C	Connection Design	102
	4.8.1	Responses of the connections	106
	4.8.2	Buckling analysis of bridge beam	112
4.9	Conclu	sion	115
CON	CLUSI	ON AND RECOMMENDATION	117
5.1	Introd	luction	117
5.2	Concl	usion	117
5.3	Novel	ties / Research Contribution	118
5.4	Recor	nmendation	119
REF	ERENC	CES	120
APP	ENDIC	ES	123
BIO	DATA (DF THE STUDENT	174
LIST	r of pu	JBLICATION	175

5

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Mechanical Properties of Carbon Fibre	11
2.2	Mechanical Properties of some of epoxy resin	12
2.3	Mechanical Properties of Carbon Fiber Reinforced Polymer	13
3.1	Properties of Steel T1-A-514	52
3.2	Carbon Fiber Towsheet SK N-300 properties	52
3.3	SKRS Resin properties	53
3.4	Mechanical Properties of Honeycomb Materials, Hex-Web	53
	5.2-1/4-25(3003)	
3.5	Lamina Properties contain 50 % carbon fiber	54
3.6	Partial load factor γ_f	60
4.1	Loading for static analysis	84
4.2	Static responses analysis	85
4.3	Lamina sequence and orientation in the laminate	92
4.4	Loading Calculation for dynamic analysis	94
4.5	Eigen-value analysis results (the lowest mode shape)	95
4.6	Input data for dynamic analysis	97
4.7	Comparison dynamic and static analysis results	98
4.8	Strength of carbon reinforced epoxy	99
4.9	Stresses on the bridge structure	100
4.10	Strength of Aluminium Honeycomb Hex-Web 5.2-1/4-	101
	25(3003)	
4.11	Failure analysis of aluminium honeycomb	101
4.12	Design forces which are used in the connection design	106
4.13	Maximum stress on the connections	112

LIST OF FIGURES

FIGURE	FIGURE	
NO.	IIILE	
1.1	Bailey Bridge	2
1.2	Armored vehicle crossing on BR 90 Bridge	2
1.3	Launching of the LEGUAN Bridge by LEGUAN-truck	3
1.4	Carriageway of Composite bridge	4
1.5	Proof test using WHIFFLE tree	4
1.6	Short- span deployable bridge	5
2.1	Aluminum honeycomb with hexagonal cell shapes	14
2.2	Applications of (a) longitudinal tensile stress, (b) transverse	17
	stress, and (c) in-plane shear stress on a unidirectional	
	continuous fiber 0º lamina	
2.3	Unidirectional continuous fibers angle a ply lamina.	19
2.4	Laminated plate geometry and ply numbering system.	24
2.5	Failure surface in $\sigma_1 \sigma_2$ plane for a unidirectional lamina	29
	according to the maximum stress criterion.	
2.6	Failure surface in $\sigma_1 \sigma_2$ plane for a unidirectional lamina	32
	according to the maximum strain criterion.	
2.7	A failure envelope in $\sigma_1 \sigma_2$ planes for a unidirectional	34
	lamina according to Tsai-Hill criterion.	
2.8	A failure envelope in σ_1 - σ_2 plane for a unidirectional lamina	38
	according to Tsai-Wu criterion.	
3.1	Flow chart of Research Methodology	47
3.2	Flow chart of Literature study	48
3.3	Flow chart of Structural analysis and design of bridge	49
3.4	PT-91M TWARDY Tank dimension	56

3.5	Weight and dimension of MLC 70 tank	57
3.6	Operational Loading Condition	61
3.7	Bridge's Model with three sections connected	62
3.8	Cross section of bridge middle beam	63
3.9	Cross section of bridge tapered beam	63
3.10a	Cross section of bridge tapered beam (CFRP only)	64
3.10b	Cross section of bridge tapered beam (Honeycomb only)	64
3.11	The sample of connection	65
3.12	Detail of the connection's model	65
3.13	The Locations of Connections	66
3.14	Beam's model in DS CATIA V5	67
3.15	Importing the beam into MSC PATRAN/NASTRAN	67
3.16	Defining the number of elements on the beam	68
3.17	Meshing of the beam in MSC PATRAN/NASTRAN	68
3.18	Laminated composite properties in MSC	69
	PATRAN/NASTRAN	
3.19	Loads and boundary conditions on the beam	70
4.1	Folding system of the Bridge	75
4.2	The A-B connection system of the Bridge	76
4.3	The C-C1-D connection system of the Bridge	76
4.4	Vehicle's load on the bridge consists of six lines to represent	77
	the number of axle of military tank MLC 70	
4.5	Vehicle's load on the bridge in x-direction (Fx)	78
4.6	Vehicle's load on the bridge in y-direction (Fy)	79
4.7	Vehicle's load on the bridge in z-direction (Fz)	79
4.8	Vertical Distributed load on the bridge (mud and foot-walk	80
	loads)	
4.9	Horizontal Distributed load (wind load) on the bridge	81
4.10	The bridge constraints at the support	83
4.11	Maximum flexural stress (σ_x) of -104 MPa on the top flange	87
	of ramp-section	
4.12	Deflection of top flange upper the support	87

4.13	The flexural stress (σ_y) of -3.84 MPa on the top flange of	88
	mid-section	
4.14	Maximum Shear stress (σ_{xy}) of -7.44 MPa on the web of	88
	ramp section	
4.15	Maximum stress (σ_x) is -96.6 MPa on the top flange of mid-	89
	section	
4.16	The maximum stress (σ_y) is -4.48 MPa on the top flange of	90
	ramp-section	
4.17	Shear stress (σ_{xy}) is -8.43 MPa on the web of ramp section	90
4.18	Maximum deflection in z –direction is 147 mm on the mid-	91
	section	
4.19	The location of honeycomb on the mid-section	93
4.20	The location of honeycomb on the ramp-section	93
4.21	Mode shape of the bridge is 5.167 Hz (the lowest mode	96
	shape)	
4.22	Failure criterion graphics in KSI unit	100
4.23	The W, M, F loads with value 19.4 KN/m on the bridge that	103
	act as Surface load	
4.24	The vehicle loads (373.633 KN) is considered as point load	103
	for simplifying in calculating of influence line caused by	
	vehicle movement on the bridge.	
4.25	Maximum bending moment at the connection of the bridge	104
	caused by distributed loads.	
4.26	Maximum shear forces at the connection of the bridge	104
	caused by distributed loads.	
4.27	Moment drawing Influence Line at connection B	105
4.28	Shear drawing Influence Line at connection B	105
4.29	Compressive and tensile forces at the connection	107
	(486670 Newton)	
4.30	Shear forces at the connection (323000 Newton)	107
4.31	The analysis of Connection A	108
4.32	The analysis of Connection B	109
4.33	The analysis of Connection C	109

4.34	The analysis of Connection D	110
4.35	The analysis of Connection C1	110
4.36	The analysis of The Rod	111
4.37	Buckling in z-direction	113
4.38	Deformed shape of buckling in z-direction	113
4.39	Buckling in y-direction	114
4.40	Buckling in x-direction	115

LIST OF ABREVIATION

CFRP	_	Carbon Fiber Reinforced Polymer
MLC	_	Military Load Class
KMW	_	Krauss-Maffei Wegmann
FRP	_	Fiber Reinforced Polymer
TDTC	_	Trilateral Design and Test Code for Military Bridging
BLF	_	Buckling Loading Factor

LIST OF SYMBOLS

θ	_	Fiber orientation angle
ν	_	Poisson's Ratio
τ	_	The shear stress
σ	_	The normal stress
E_{f}	-	Modulus of elasticity
G_{f}	-	Shear modulus of elasticity
3	_	Normal strain
γ	_	Shear strain
Q	_	The lamina stiffness matrix
S	_	The compliance matrix
F	_	Force
F_1	_	Force in fiber direction
F_2	_	Force perpendicular to fiber direction
М	_	Moment Forces
Ν	—	Normal forces
κ	-	The bending curvature
t	_	The thickness of lamina
А	_	In plane stiffness of laminate
В	_	Coupling stiffness of laminate
D	_	Bending stiffness of laminate

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Load Calculation for Static Analysis	123
A1	Study on the effect of fiber orientation on	126
	reducing the bridge deflection	
A2	Study on the effect of lamina and core	128
	thickness on the deflection of the bridge	
A3	Study on the effect of eccentric loading on	130
	the deflection, and stresses	
В	Load Calculation for Dynamic Analysis	132
B1	Study on the effect of vehicle's speed on	135
	bridge structure responses	
С	Input Data for Dynamic Analysis	137
D	Failure Criterion calculation	138
Е	Calculation of load for hinge design	141
F	Influence Line Calculation	142
G	Trilateral Design and Test Code for	145
	Military Bridging and Gap Crossing	
	Equipment	

CHAPTER I

INTRODUCTION

1.1 Background

The work presented in this thesis focuses on design and analysis of foldable bridge using carbon fibre reinforced polymer (CFRP). The use of honeycomb material between CFRP to produce sandwich structure also will be analysed. This will be carried out for 30 meter foldable bridge that able to support the loads up to 63.5 ton or Military Load Class (MLC) 70. In this study one unit of military tank and others loads according to Trilateral Design and Test Code (TDTC, 1996) on the bridge will be considered in bridge design and analysis.

The bridge is important for mobility to transport troops and vehicles through obstacles like river, valley, and lake or when an existing bridge gets damaged because of disaster or enemy attack in military. In this study a portable bridge will use foldable beam concept. The reason behind using the concept is that it has a simple method in launching, retrieving, and storing of bridge, and hopefully this method will save time. The military bridge usually is made from steel alloy (Bailey bridge, Inc, 2009) and aluminium alloy (The manufacturer, 2003) material. Due to the high density of such materials will produce a weight bridge which is not suitable with portable military bridge requirement. For example, Figure 1.1 and 1.2 shows Bailey bridge which is made from steel alloy and BR 90 Bridge from aluminium alloy, respectively.

Figure 1.1: Bailey Bridge (Bailey bridge, Inc, 2010)

Figure 1.2: Armored vehicle crossing on BR 90 Bridge (Alvis, 2003)