DEVELOPMENT OF DYNAMIC SERVICE DELIVERY MODEL IN WAVELENGTH ROUTED OPTICAL NETWORKS USING GMPLS FRAMEWORK

FUEAD BIN ALI

MASTER OF SCIENCE

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2017

DEVELOPMENT OF DYNAMIC SERVICE DELIVERY MODEL IN WAVELENGTH ROUTED OPTICAL NETWORKS USING GMPLS FRAMEWORK

FUEAD BIN ALI

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science (Computer Science)

To my parents (May Allah bless you both); and especially to my wife and children.

ABSTRACT

Wavelength routed optical networks has been claimed as the main technology to underpin the future telecommunication networks and therefore it has garnered widespread interests from industrial and academic researchers alike to investigate key issues that affect its implementation and deployment. The main challenge within this domain is primarily to provide a dynamic service delivery technique to match the growing demand in network capacity due to the increasing popularity of end-users applications which include the omnipresent internet connectivity, video on-demand, online gaming and multimedia services. The proliferation of next generation optical networks also known as the all optical networks has paved the way for the study in this thesis. Network functions previously performed in the electrical domain have now gradually migrated to the optical domain, thus giving a huge upgrade in terms of the network capacity and capability. While a number of works has focused on the developing network models to measure the qualitative and quantitative performances of such networks, the combination of routing algorithms, signaling and wavelength assignment schemes employed proves to have substantial effects. Thus, this research attempts to address the issue of providing dynamic service delivery for users in the optical domain from modeling perspective. A new optical network model is developed using the GMPLS based framework for the control plane of the overall network operation. The key feature in this model is the lightpath provisioning process for accommodating service request in dynamic fashion. The performance of this

model is then investigated by means of simulations using *OMNeT*++ simulation platform. Experiments through simulations for this research have produced results showing that the network model gives consistent performance in terms of the network behaviour. Furthermore, results obtained from the simulation are also used to validate and verify the accuracy of the developed network model in this study. In addition to that, this thesis proposes a benchmarking for delivering such on-demand requests for future network services especially on the correlation between the desired network utilisation and its baseline network setup and resources.

ABSTRAK

Rangkaian optik gelombang panjang telah disarankan sebagai teknologi utama untuk menyokong rangkaian telekomunikasi masa-depan dan dengan demikian ia telah mendapat minat yang meluas dari penyelidik di sektor industri dan akademik untuk mengkaji isu utama yang mempengaruhi pelaksanaan dan penggunaannya. Cabaran utama dalam domain ini adalah untuk menyediakan teknik penyampaian perkhidmatan yang dinamik untuk menandingi permintaan yang semakin meningkat dalam kapasiti rangkaian disebabkan peningkatan populariti aplikasi pengguna seperti penyambungan internet di mana-mana, permintaan video, perkhidmatan permainan dan multimedia dalam talian. Peningkatan rangkaian optik generasi akan datang yang juga dikenali sebagai rangkaian semua-optik telah membuka jalan bagi kajian ini. Fungsi rangkaian sebelum ini yang dilakukan di domain elektrik kini telah beralih ke domain optik secara beransur-ansur, sehingga memberikan peningkatan besar dari segi kemampuan dan keupayaan jaringan. Walaupun beberapa kajian telah memberi tumpuan kepada membangunkan model rangkaian untuk mengukur prestasi kualitatif dan kuantitatif rangkaian tersebut; kombinasi algoritma penghalaan, skema isyarat dan penugasan gelombang panjang yang digunakan membuktikan terdapat kesan yang agak penting. Oleh itu, kajian ini cuba menangani isu penyampaian perkhidmatan dinamik bagi pengguna dalam domain optik dari perspektif pemodelan. Model rangkaian optik yang baharu telah dibangunkan menggunakan rangka kerja GMPLS untuk satah kawalan operasi rangkaian keseluruhan. Ciri utama dalam model

ini adalah proses memperuntukkan gelombang untuk menampung permintaan perkhidmatan dengan cara yang dinamik. Prestasi model ini kemudian disiasat dengan cara simulasi menggunakan platform simulasi *OMNeT++*. Eksperimen melalui simulasi untuk kajian ini telah menghasilkan dapatan yang menunjukkan bahawa model rangkaian memberikan prestasi yang konsisten dari segi tingkah laku rangkaian. Selain itu, dapatan yang diperoleh daripada simulasi juga digunakan untuk mengesahkan dan mempastikan ketepatan model rangkaian yang dibangunkan dalam kajian ini. Di samping itu, tesis ini juga mencadangkan penanda aras bagi penghantaran permintaan ke atas perkhidmatan rangkaian masa-depan terutamanya mengenai hubungan antara penggunaan rangkaian yang dikehendaki sejajar dengan persediaan dan sumber rangkaiannya.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to whom that encouraged and guided me towards the completion of this work. This includes my supervisor Associate Professor Dr Mohd Nazri Ismail for his endless support and patience throughout my work.

Last and most importantly, I am grateful to my family; my wife and children for all their support, patience and love.

APPROVAL

I certify that an Examination Committee has met on 11th July 2017 to conduct the final examination of Fuead b Ali on his degree thesis entitled 'Development of Dynamic Service Delivery Model in Wavelength Routed Optical Networks using GMPLS Framework'. The committee recommends that the student be awarded the Master of Science (Computer Science).

Members of the Examination Committee were as follows.

Kept. Zulkifly b Mat Radzi TLDM (Bersara), PhD

Professor Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Chairman)

Arniyati bt Ahmad, PhD

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Kamarularifin b Abd Jalil, PhD

Associate Professor Faculty of Computer Science and Mathematics Universiti Teknologi MARA (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfillment of the requirement for the degree of **Master of Science (Computer Science)**. The members of the Supervisory Committee were as follows.

Mohd Nazri b Ismail, PhD

Associate Professor Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Zuraini bt Zainol, PhD

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	: Fuead b Ali
Date of birth	: 2 nd June 1972
Title	: Development of Dynamic Service Delivery Model in Wavelength Routed Optical Networks using GMPLS Framework

Academic Session : December 2015

I declare that this thesis is classified as:

Q CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
Q RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
Q OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchanges.

Signature

Signature of Main Supervisor

IC/Passport No.

Name of Main Supervisor

Date:_____

Date: _____

Note: * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the organisation stating the period and reasons for confidentiallity and

restriction.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvii

CHAPTER

1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	2
	1.3	Objectives of the Research	5
	1.4	Scope of the Research	6
	1.5	Thesis Chapterisation	7
2	LIT	ERATURE REVIEW	9
		2.1 Introduction	9
	2.2	Evolution of Optical Networks	10
		2.2.1 First Generation Optical Network	10
		2.2.2 Second Generation Optical Network	11
		2.2.3 Next Generation Optical Network	12
	2.3	Optical Transport Networking	13
		2.3.1 Structure of Optical Layer	14
		2.3.2 OTN Framing	16
	2.4	Optical Networks Architectures	18
		2.4.1 Wavelength Routed Optical Networks	19
		2.4.2 OXC Functionality	20
	2.5	Optical Connection Management	22
		2.5.1 Centralised Method	23
		2.5.2 Distributed Method	23
		2.5.3 Routing and Wavelength Assignment	24
	2.6	Intelligent Optical Networks	25
		2.6.1 GMPLS-based Control Plane	26
	2.7	Optical Dynamic Service Delivery	29
		2.8 Summary	30
3	ME	THODOLOGY	31
	3.1	Introduction	31
	3.2	OMNeT++ Simulation Platform	32
	3.3	Optical Node Structure	36

3.3 Optical Node Structure

	3.4	Optica	l Cross-Conne	ect (OX	KC)		37
		-		3.4.1	Optio	cal Control Plane	39
		3.4.2	Connection	Manag	ement	and Provisioning	46
	3.5	Netwo	rk Model Imp	lement	tation		47
				3.5.1	Rand	lom Number Generation	47
				3.5.2	Traff	ic Generation	49
				3.5.3	Netw	ork Model Elements	50
				3.5.4	Light	tpath Establishment	51
				3.5.5	Dyna	amic RWA	53
		3.5.6	Signaling an	d Reso	urce F	Reservation	58
					3.6	Summary	61
4	NET	WOR	K MODEL P	ERFO	RMA	NCE AND ANALYSIS	62
					4.1	Introduction	62
					4.2	Model Verification	63
				4.2.1	Simu	llation Environment	63
				4.2.2	Simu	lation Process	65
		4.2.3	Impact of No	etwork	Conne	ectivity	65
					4.3	Model Validation	69
				4.3.1	Estin	nation of Result Accuracy	70
		4.3.2	Detection of	Steady	y State	Condition	74
			D	4.3.3	Erlar	ig B Test and Comparison	76
		4.3.4	Performance	e Com	pariso	n based on Mesh	70
		Б.	Networks	1 NT 4	1 T	1 3 7 1	79
	4.4	Estima	ition of Optim	al Netv	work L	Load Values	80
	4.5	Summa	ary				81
5	CON	NCLUS	ION				83
					5.1	Introduction	83
					5.2	Work Summary	84
				5.2.1	Optic	cal Network Design	84
				5.2.2	Optio	cal Network Test	84
					5.3	Results Discussion	85
					5.4	Research Contributions	87
					5.5	Future Work	88
				5.5.1	Mult	i-Layer Network Model	88
				5.5.2	Cont	rol Plane Functionality	89
					5.6	Summary	90
BIBLIOGRA	APHY						91
APPENDIC	ES						98
BIODATA O	F STUI	DENT					104

LIST OF TABLES

3.1	Link State Table	41
3.2	Lightpath Information Table	42
3.3	Wavelength Routing Table	43
4.1	Classifications of Network Nodal Degree	66
4.2	Details of Network Setup for Mesh-based Comparisons	79
A.1	Cost associated with Weight Functions	100
B .1	Student's t Table	103

LIST OF FIGURES

1.1	Growth of Network and IP Traffic - Past and Future	3	
	(a) Network Growth III Exabytes from 2000 to 2015 (Cisco VIVI Global IP Traffic Forecast (n d))	3	
	(b) Expected Network Growth in Exabytes from 2016 to	5	
	2021 (Penner and Sumits (2016))	3	
	(c) Anticipated Global IP Traffic by year 2020 (Pepper and Sumits (2011))	3	
1.2	Overview of the Thesis	7	
1.2		,	
2.1	Hierarchy of Second Generation Optical Networks	12	
2.2	Future Intelligent Optical Networks	13	
2.3	OTN Layers	15	
2.4	Optical Layer Structure	15	
2.5	Optical Channel Digital Wrapper	17	
2.6	A Taxonomy of Optical Networks	18	
2.7	Wavelength Routed Optical Networks	20	
2.8	The GMPLS-based Optical Control Plane	28	
3.1	Workflow on Research Methodology	34	
3.2	OMNeT++ Model Framework	35	
	(a) Model Hierarchical Structure	35	
	(b) Hierarchical Initialisation of Parameters	35	
3.3	The Structure of an Optical Node	36	
3.4	The Structure of an Optical Node	37	
3.5	Lightpath Provisioning Process	48	
3.6	Traffic Generation via Connection Requests	50	
3.7	Optical Mesh Network Implemented using OMNeT++	51	
3.8	Internal OXC Structure Implemented in OMNeT++ 5		
3.9	Parallel Reservation Scheme for Lightpath Establishment		
3.10	Parallel Reservation Scheme for Lightpath Deletion	60	
4.1	4-Node Network Topologies	66	
	(a) Linear Topology	66	
	(b) Ring Topology	66	
	(c) Partial Mesh Topology	66	
	(d) Full Mesh Topology	66	
4.2	16-Node Network Topologies	67	
	(a) Ring Topology	67	
	(b) Partial Mesh Topology	67	
	(c) Star-Ring Topology	67	
	(d) Torus Mesh Topology	67	
4.3	Network Behaviour Comparison in 4-node Configuration	68	
4.4	Network Behaviour Comparison in 16-node Configuration	69	
		~ /	

4.5	Ensemble Averages, $\hat{x_j}$ for Load=50Erlang	76
4.6	Moving Averages, $\tilde{x_j}$ for the Blocking Probability	77
4.7	2-node Network for Erlang B Verification	78
4.8	Theoretical and Simulation Results for Erlang B Test	78
4.9	Comparison of Blocking Probability in Mesh Network	80
4.10	Optimal Load for the Network Model	81
A.1 I	Example of using different weight functions in Dijkstra's algorithm to find a shortest path between a pair of nodes. Links are labeled with	
	available and total wavelengths.	100

LIST OF ABBREVIATIONS

ASON A	utomatically Switched Optical Networks	
ATM Asynchronous Transfer Mode		
BGP B	order Gateway Protocol	
CBR Co	nstraint Based Routing	
DiffServ I	Differentiated Service	
DIR	Destination Initiated Reservation	
DWDM	Dense Wavelength Division Multiplexing	
ESCON	Enterprise System Connection	
FDDI	Fibre Distributed Data Interface	
FEC	Forwarding Equivalent Class	
FSC	Fiber Switch Capable	
GbE	Gigabit Ethernet	
GMPLS	Generalized Multi-protocol Label Switching	
HIPPI	High Performance Parallel Interface	
HW	Hop-based Weight	
IETF	Internet Engineering Task Force	
IGP	Interior Gateway Protocol	
IP	Internet Protocol	
ISP	Internet Service Provider	
ITU	International Telecommunication Union	
ITU-T	ITU-Telecommunication Standardization Sector	
LMP	Link Management Protocol	
LSP	Label Switched Path	

LSR	Label Switch Router
MPLS	Multi-Protocol Label Switching
$MP\lambda S$	Multi-Protocol Lambda Switching
NGN	Next Generation Networks
NNI	Network to Network Interface
OADM Op	tical Add/Drop Multiplexer
OBS	Optical Burst Switching
OCh	Optical Channel
OCh-P	Optical Channel-Path
OCh-S	Optical Channel-Section
OEO	Optical Electrical Optical
OIF	Optical International Forum
OMNeT++	Objective Modular Network Testbed in C++
OMS	Optical Multiplex Section
000	Optical to Optical to Optical
OPS	Optical Packet Switching
OSPF	Open Shortest Path First
OSPF-TE	Open Shortest Path First Traffic-Engineering
OTN	Optical Transport Network
OTS	Optical Transmission Section
OXC	Optical Cross Connect
PacNet	Pacific Network
PDH	Plesiochronous Digital Hierarchy
QoS	Quality of Service
RSVP	Resource Reservation Protocol
RSVP-TE	Resource Reservation Protocol Traffic Engineering
RWA	Routing and Wavelength Assignment
SDH	Synchronous Digital Hierarchy
SDL	Simplified Data Link

SIR	Source Initiated Reservation
SLA	Service Level Agreement
SONET	Synchronous Optical Network
TAWW	Total and Available Wavelength Weight
TE	Traffic Engineering
UNI	User Network Interface
V&V	Validation and Verification
VWP	Virtual Wavelength Path
WDM	Wavelength Division Multiplexing
WP	Wavelength Path
WR-OXC	Wavelength Routing OXC
WT-OXC	Wavelength Translating OXC
WRON	Wavelength Routed Optical Network

CHAPTER 1

INTRODUCTION

1.1 Introduction

The proliferation of optical network technology has helped to alleviate the emerging of next generation transport networks; also known as intelligent optical network. Network functions previously processed in the electrical domain have now gradually migrated to the optical domain, thus giving a huge upgrade in terms of the network capacity and capability.

One of the main areas of interest in optical networks technology revolves on the automated service delivery for the users (Ritter (2009)). In this optical domain, this mechanism is simply defined as the provisioning of the light paths; which is also known as the optical connections. This process must be dynamic, as implemented in the IP domain for the request for connectivity between IP hosts. As such, the study in this research attempts to quantitatively analyze the performance of such network in a dynamic optical connections provisioning process. In this study, the interest is on the all optical network architecture which employs the wavelength routing scheme.

1.2 Problem Statement

The current exponential growth of demands for internet data traffic presents a huge challenge for most network service providers. The industry analyst firm Dell'Oro Group has predicted that bandwidth consumption to grow by 40 to 50 percent on average per year (Ritter (2009)). The research conducted by the Cisco VNI Global IP Traffic Forecast (*Cisco VNI Global IP Traffic Forecast* (n.d.)), (Pepper and Sumits (2016)) and (Pepper and Sumits (2011)) as shown in Figure 1.1 also clearly indicate the exponential fashion of the network growths. The main factors that rapidly stimulate this growth are the increasing popularity of the end-user applications which include the omnipresent internet connectivity, video on-demand, on-line gaming as well as multi-media messaging services.

In order to stay competitive, Internet Service Providers (ISP) must be able to meet these demands while keeping the operation and running cost at a considerable level. As a result, deployment for a new network infrastructure seems prohibitive since it requires enormous amount of capital investments. In contrast, utilising the current network infrastructure coupled with strategies on varying and increasing the service offerings can be an interesting option (Kauffman (2005)).

The advent of Generalized MultiProtocol Label Switching (GMPLS) (Farrel and Bryskin (2006)) as optical control plane has helped transforms the future optical network technology. From being a merely point-to-point connection, optical network has reached an advanced state where a number of intelligent functions are ready to be

Global IP Traffic & Service Adoption Drivers

(c) Anticipated Global IP Traffic by year 2020 (Pepper and Sumits (2011))

Figure 1.1 Growth of Network and IP Traffic - Past and Future

incorporated to the optical domain, such as routing, topology discovery and signaling. This also includes some mechanisms to offer Quality of Service (QoS) guarantees to be widely available at the IP layer. Moreover, employing GMPLS-based control plane has also created a new paradigm in optical-based service offerings to the end-users. From a traditional static-based, it is now possible to provide dynamic, on-demand, and multiple classes of services with appropriate Service Level Agreements (SLA), which is also defined as discrete level of service guarantees.

From protocol perspectives, GMPLS provides a framework where existing IP-based protocols such as OSPF (Ramaswami and Siravajan (1998)) and RSVP (Ramaswami and Siravajan (1998)) are able to function seamlessly in the optical domain. Lightpaths, which are the main entity of the connections that exist within the network can be established with ease by utilising these protocols.

From service perspectives, GMPLS can also provide traffic engineering (TE) for lightpaths within the network. TE capable optical network enables the network to focus on its performance with regard to delivering services at a much finer granularity, which in turn results in a better capacity optimisation and utilisation. In this respect, much finer QoS classifications at the optical level can be achieved to target specific users' requirements.

As outlined in (Kauffman (2005)), "network service providers are looking beyond today's clunky service delivery model. Its reliance on manual provisioning system and long-term capacity allocation have made the service model an inefficient one. A next generation network architecture is envisioned where its ability to utilise network