FIRST PRINCIPLES STUDY OF POLYANIONIC CATHODE MATERIALS LiFeSO4F AND LiFeSO4OH USING DENSITY FUNCTIONAL THEORY

FADHLUL WAFI BIN BADRUDIN

DOCTOR OF PHILOSOPHY UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2016

FIRST PRINCIPLES STUDY OF POLYANIONIC CATHODE MATERIALS LiFeSO4F AND LiFeSO4OH USING DENSITY FUNCTIONAL THEORY

FADHLUL WAFI BIN BADRUDIN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy (Physics)

June 2016

ABSTRACT

In this research, first principles techniques have been leveraged to thoroughly understand on the fundamental knowledge of Li-ion batteries. Computational materials design demonstrated that the modern modelling techniques play a valuable role that can help to achieve deeper fundamental insight into novel materials for rechargeable lithium ion batteries by computing key relevant properties. The effect of DFT + U method was investigated on the properties of cathode materials such as structural properties, electronic properties and voltage of the cathode. It is found that the electronic properties and voltage calculation are improved upon the addition of U value to the iron atom. However, the addition of U value on the structural properties calculation is not necessary as it has overestimated the data. To understand the difference of voltage between LiFeSO₄F and LiFePO₄, the Mulliken population analysis calculation was conducted. The result shows that the increase of voltage of LiFeSO₄F compared to LiFePO₄ which is due to the inductive effect. However, the difference of voltage between tavorite and layered LiFeSO4OH could not be explained using this inductive effect. The best explanation to this phenomenon, the difference between the polyhedral connectivity of the tavorite and layered LiFeSO₄OH structure is taken into account. It is found that the layered LiFeSO₄OH produces the overestimated result on lattice parameter using the conventional exchange correlation functional. To improve the result, the van der Waal dispersion correction was applied to the GGA-PBE and GGA-PBEsol exchange correlation functional. Upon the addition, the structural properties and the calculated voltage of the layered LiFeSO₄OH have been improved near to experimental values. The density of states of LiFePO₄, LiFeSO₄F and LiFeSO₄OH cathode materials were calculated to investigate their rate capability. It is found that those cathode materials possess low rate capability as the lithiated and delithiated states behave as n-type and p-type semiconductor respectively. Furthermore, the effect of Vanadium substitution on the layered LiFeSO₄OH was also investigated. Based on the formation energy calculation, vanadium substitution in LiFeSO4OH tends to reside at the Fe site because of it more energetically stable compared to S site. The high volume of LiFe_{0.75}V_{0.25}SO₄OH facilitates lithium ion to move easily and hence enhancing the rate number of lithium ion to channel in and out from the cathode. Thus, this contributes in increasing the ionic conductivity of such cathode material. The reduced band gap upon the vanadium substitution could improve the electronic conductivity of the cathode material. The calculated bond order values obtained upon delithiation process showing that the changes of S-O bond in LiFe_{0.75}V_{0.25}SO₄OH are more uniform resulting the volume shrinking after the removal of lithium ion is lower compared to the pristine compound. Thus, it could improve the cycle life of the battery and could make this new LiFe_{0.75}V_{0.25}SO₄OH as a promising cathode material candidate in lithium ion batteries.

ABSTRAK

Penyelidikan dalam bidang ini telah manfaatkan kaedah prinsip pertama secara menyeluruh bagi meningkatkan kefahaman secara mendalam terhadap teknologi bateri Li-ion. Rekabentuk bahan berkomputeran menunjukkan bahawa kaedah pemodelan moden memainkan peranan yang bernilai untuk mencapai pemahaman fundamental secara terperinci terhadap bahan novelti untuk aplikasi bateri lithium berdasarkan pengiraan sifat-sifat bahan yang berkaitan. Kesan kaedah DFT + U terhadap sifat-sifat bahan katod seperti sifat struktur, sifat elektronik, dan voltan katod telah diselidik. Berdasarkan penyiasatan tersebut, sifat elektronik dan pengiraan voltan telah bertambah baik selepas penambahan nilai U di dalam atom ferum. Walaubagimanapun, penambahan nilai U terhadap sifat struktur adalah tidak diperlukan kerana akan menyebabkan anggaran nilai yang berlebihan. Untuk memahami perbezaan voltan antara LiFeSO4F dan LiFePO4, pengiraan analisis populasi Mulliken telah dilakukan. Hasil menunjukkan, peningkatan voltan LiFeSO₄F berbanding LiFePO₄ adalah disebabkan oleh kesan induktif. Walaubagaimanapun, perbezaan antara LiFeSO4OH *tavorite* dan berlapis tidak dapat dijelaskan menggunakan kesan ini. Penjelasan terbaik terhadap fenomena ini adalah dengan mengambil kira perbezaan antara sambungan polihedra struktur tavorite dan berlapis. Selain itu, apabila fungsi kolerasi pertukaran konvensional digunakan, anggaran yang berlebihan terhadap sifat parameter kekisi struktur LiFeSO4OH berlapis akan terjadi. Untuk memperbaiki hasil tersebut, pembetulan serakan van der Waals telah digunakan terhadap fungsi kolerasi pertukaran GGA-PBE dan GGA-PBEsol. Setelah penambahan tersebut, penambahbaikan terhadap sifat struktur dan pengiraan voltan LiFeSO4OH berlapis menghampiri keputuran nilai eksperimen. Ketumpatan keadaan bagi bahan katod LiFePO₄, LiFeSO₄F dan LiFeSO₄OH telah dikira untuk mengetahui kadar keupayaan mereka. Ia didapati bahawa, bahan-bahan tersebut mempunyai kadar keupayaan yang rendah kerana keadaan berlitium yang bersifat sebagai semikonduktor jenis-n dan keadaan tidak berlitium yang bersifat sebagai semikonduktor jenis-p. Selain itu, kajian kesan penggantian vanadium di dalam LiFeSO₄OH berlapis turut dijalankan. Berdasarkan pengiraan tenaga pembentukan, penggantian vanadium di dalam LiFeSO₄OH lebih cenderung berada di tempat Fe kerana tenaganya lebih stabil berbanding di tempat S. Isi padu LiFe_{0.75}V_{0.25}SO₄OH yang lebih besar memudahkan pergerakan ion litium dan seterusnya meningkatkan kadar pergerakan ion masuk dan keluar di dalam katod. Oleh yang demikian, ini akan menyumbang kepada peningkatan kekonduksian ion di dalam bahan katod. Pengurangan jurang jalur selepas penggantian vanadium boleh meningkatkan kekonduksian elektronik bahan katod. Nilai susunan ikatan yang dikira selepas proses pembuangan litium menunjukkan kepada perubahan ikatan S-O di dalam LiFe_{0.75}V_{0.25}SO₄OH adalah lebih seragam, menghasilkan pengecutan isipadu selepas pembuangan litium yang lebih rendah berbanding bahan asal. Ini boleh meningkatkan jangka hayat sesuatu bateri dan boleh menjanjikan LiFe_{0.75}V_{0.25}SO₄OH yang baharu sebagai calon bahan katod kepada bateri litium ion.

ACKNOWLEDGMENTS

To begin with, I would like to express my highest gratitude to Allah S.W.T for endless blessings, giving me an opportunity to study in Universiti Pertahanan Nasional Malaysia (UPNM) and for giving me strength and ability to complete this study. Foremost, I would like to express my sincere gratitude to my entire supervisors; Professor Dr Muhd Zu Azhan Yahya and Dr Mohamad Fariz Mohamad Taib for their continuous support to guide my study research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in accomplishing this research and writing the thesis.

Besides, I would like to thank members of the computational group-imade UiTM, Assoc. Prof. Dr Ing Oskar, Dr Kamil, Sazwan, Hafiz, Hazrie, Anum and other colleagues for their continuous support. Thank you for your valuable comments and suggestions. Thank you for providing me rooms to spare and discuss ideas throughout this study.

A big thank you dedicated to my parent, Rohani Hj Ali and Badrudin Md Rejab for supporting me spiritually and even financially throughout my life. Thanks to my lovely wife Nur 'Atikah bt Md Azani and my little daughter, Hanan 'Ulya binti Fadhlul Wafi for always beside me during my study and giving motivation and spiritual support and even fully taking care of me during difficult times and hardship.

To all my dearest brothers, sisters, brothers in law and sisters in law, thank you for your support, encouragement and for putting colours in my life. Last but not least, I wish to express my sincere thanks to those who have directly or indirectly helped me in making this study a success.

APPROVAL

I certify that an Examination Committee has met on **29 August 2016** to conduct the final examination of **Fadhlul Wafi bin Badrudin** on his degree thesis entitled "First Principles Study of Polyanionic Cathode Materials LiFeSO₄F and LiFeSO₄OH Using Density Functional Theory". The committee recommends that the student be awarded the Degree of Doctor Philosophy (Physics).

Member of the Examination Committee were as follows:

Mohd Nazri bin Ismail, PhD

Associate Professor Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Chairman)

Noriza binti Ahmad Zabidi, PhD

Senior Lecturer Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Abdul Kariem bin Hj. Mohd Arof, PhD

Professor Department of Physics, Faculty of Science University of Malaya (External Examiner)

Ab Malik Marwan bin Ali, PhD

Associate Professor Faculty of Applied Sciences Universiti Teknologi MARA Shah Alam (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirement for the Degree of Doctor of Philosophy (Physics). The members of the Supervisory Committee were as follows.

Muhd Zu Azhan bin Yahya, PhD

Professor Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Mohamad Fariz bin Mohamad Taib, PhD

Faculty of Applied Sciences Universiti Teknologi MARA Shah Alam (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	: Fadhlul Wafi bin Badrudin
Date of birth	: 26 April 1990
Title	: First Principles Study of Polyanionic Cathode Materials
	LiFeSO ₄ F and LiFeSO ₄ OH Using Density Functional Theory
Academic session	: 3/2013 - 9/2016

I declare that this thesis is classified as:

CONFIDENTIAI	(Contains confidential information under the Official
	Secret Act 1972)*
RESTRICTED	(Contain restricted information as specified by the
	organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open
	access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE	SIGNATURE OF SUPERVISOR
900426-02-5373	PROF DR. MUHD ZU AZHAN YAHYA
IC/PASSPORT	NAME OF SUPERVISOR
Date:	Date:

Note: *If the thesis is CONFIDENTIAL OR RESTRICTED, please attach latter from the organization stating the period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

ABSTRAC	^T	ii
ABSTRAK		iii
ACKNOW	LEDGMENT	iv
APPROVA	\L	V
DECLARA	ATION OF THESIS	vii
TABLE O	F CONTENTS	viii
LIST OF F	IGURES	xii
LIST OF 1	ABLES	xvi
LIST OF A	BBREVIATIONS	xviii
СНАРТ	'ER	
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Challenges And Motivation	4
	1.3 Problems Statement	5
	1.4 Research Objectives	6
	1.5 Significant Of Research	7
	1.6 Thesis Structure	8
2	LITERATURE REVIEW	10
	2.1 Introduction	10
	2.2 Li-ion Batteries	11
	2.3 Mechanism of Lithium-ion Battery	14
	2.4 Basic Thermodynamic of Lithium Ion Battery	17
	2.5 Cathode Materials	18

	2.5.1 Layered LiCoO ₂	20
	2.5.2 Spinel LiMn ₂ O ₄	24
	2.5.3 Polyanionic Olivine LiFePO ₄	26
	2.5.4 Polyanionic Tavorite/Triplite LiFeSO ₄ F cathode materials	30
	2.5.5 Polyanionic Layered and Tavorite	33
	2.6 Summary of Chapter	35
3	DENSITY FUNCTIONAL THEORY	36
	3.1 Introduction	36
	3.2 First Principles of Quantum Theory	37
	3.3 Theorem, Method and Exchange-Correlation Functional	40
	3.3.1 The Hohenberg-Kohn Theorems	41
	3.3.2 Kohn-Sham Method	44
	3.3.3 Exchange-Correlation Functional	47
	3.4 Bloch's Theorem and Plane-Wave Basis Set	49
	3.5 Pseudopotential Method	51
	3.6 k-Point Sampling	53
	3.7 DFT+U Method	55
	3.8 Dispersion correction for DFT	57
	3.9 Cambridge Serial Total Energy Package (CASTEP)	59
	3.10 Summary of Chapter	62
4	COMPUTATIONAL METHOD AND THEORIES	63
	4.1 Introduction	63
	4.2 The Computational Materials Science and Material	64
	4.3 Input Structural Data for Construction	64
	4.4 Simulation of the Input Structure	66

	4.5 Calculation and Analyzation of Properties	68
	4.6 Implemented Theory in Analyzing LiFePO ₄ Using CASTEP Analysis 4.6.1 Band Structure	70 70
		70
	4.6.2 Density of States (DOS) and Chemical Bonding Charges Density	72
	4.6.3 Voltages	74
	4.6.4 Bond Order	75
	4.7 Summary of Chapter	76
5	COMPARATIVE STUDY OF STRUCTURAL, BOND PROPERTIES, VOLTAGE (V) AND THE INDUCTIVE EFFECT BETWEEN LiFePO4, AND LiFeSO4E	77
	5.1 Introduction	77
	5.2 Computational Details	78
	5.3 Convergences Test with Respect to the k-point	79
	5.4 Convergences Test With Respect to the Cut-off Energy	81
	5.5 Geometrical Optimization of Olivine LiFePO ₄	84
	5.6 Geometrical Optimization for Tavorite LiFeSO ₄ F	97
	5.7 Discussion and comparison between LiFePO ₄ and LiFeSO ₄ F system	108
	5.8 Summary of Chapter	111
6	THE ELECTRONIC AND STRUCTURAL PROPERTIES OF HYDROSULPHATE CATHODE MATERIAL	113
	6.1 Introduction	113
	6.2 Computational Details	114
	6.3 Layered LiFeSO ₄ OH	116
	6.4 Tavorite LiFeSO ₄ OH and Maxwellite FeSO ₄ OH	132
	6.5 Discussion and Origin of Voltage Difference in Tavorite and Layered Structure of LiFeSO4OH	139
	6.6 Summary of Chapter	144

7	THE RATE CAPABILITY OF THE CATHODE MATERIALS	146
	7.1 Introduction	146
	7.2 Electronic Properties of LiFeSO ₄ F	147
	7.2.1 Layered structure of LiFeSO ₄ OH	151
	7.2.2 Tavorite and Maxwellite Structure of	154
	7.3 Discussion	158
	7.4 Summary of Chapter	163
8	EFFECT OF THE VANADIUM SUBSTITUTION ON THE LAVEDED LIE SO (OH	164
	8.1 Introduction	164
	8.2 Computational Details	164
	8.3 Results and Discussion	166
	8.4 Summary of Chapter	175
9	CONCLUSIONS AND SUGGESTIONS FOR FUTURE	176
	9.1 Conclusion	176
	9.2 Suggestions for Future Work	179
REFERENC	CES	181
APPENDIX		195
BIODATA (OF STUDENT	197
LIST OF PU	JBLICATIONS	198
CONFEREN	NCE AND PRESENTATION	200

LIST OF FIGURES

Figure	Caption	Page
Figure 2.1	Comparison of different types of batteries with their specific	12
	energy density and volumetric energy density. Adapted from [50]	
Figure 2.2	Schematic diagram of a lithium ion cell. The cell is	16
	composed of a cathode, anode, separator and electrolyte.	
	Adapted from [67]	
Figure 2.3	The timeline for the development of cathode materials	19
Figure 2.4	The structure of layered oxide, LiCoO ₂	21
Figure 2.5	(a) Voltage–capacity profiles of the LiCoO ₂ crystal and (b)	22
	cycling performance at current 1C current rate. Taken from [73]	
Figure 2.6	The crystal structure of LiMn ₂ O ₄ (spinel)	24
Figure 2.7	(a) Charge/discharge profiles of C-LMO at 1 st , 200 th , and	26
	800 th cycles obtained at 0.2 C current; (b) corresponding	
	dQ/dV curves of 1 st , 200 th and 800 th cycles. Adapted from [82]	
Figure 2.8	The crystal structure of LiFePO ₄ (Green: Li Ion, Red:	27
	Oxygen Ion, White: Phosphate Ion, Brown: Fe Ion)	
Figure 2.9	The typical charge and discharge curves of (a) LiFePO ₄	28
	(pure) and (b) LiFePO ₄ /C cells. Source from [3]	
Figure 2.10	The lithium ion diffusion pathway and its minimum energy	30
	path. Adapted from [52]	
Figure 2.11	Tavorite LiFeSO ₄ F crystallized in triclinic structure P-1	31
	space group (t-LFSF)	
Figure 2.12	Triplite LiFeSO ₄ F belongs to monoclinic cell	32
Figure 2.13	(a) The discharge-charge curves of FeSO ₄ OH obtained at	34
	various rate (b) Capacity vs. cycle number for C/20, C/5	
5. 0.1	and C rate. Adapted from [27]	
Figure 3.1	A schematic illustration of all-electron (solid lines) and	53
	pseudo- (dashed lines) potentials and their corresponding	
F ' 4.1	wave functions. Adapted from [115]	<i>C</i> 1
Figure 4.1	The process of the modelling started from the input to the output	64
Figure 4.2	Unit cell of LiFePO ₄ (a) in ball and stick view and (b)	65
	crystal structural perspective polyhedral view	
Figure 4.3	The overview of calculation setting flow	68
Figure 4.4	Several properties that available in CASTEP calculation	69
Figure 4.5	Few properties that can be displayed using CASTEP	69
	analysis	
Figure 4.6	Schematic diagram of behavior band structure between	71
	conductor (metal), semiconductor and insulator	
Figure 4.7	Schematic of energy levels for a (a) Mott-Hubbard insulator	72
	and (b) a charge-transfer insulator. Taken from [112]	
Figure 5.1	The convergence test graph of <i>k</i> -point for LiFePO ₄	80

Figure 5.2	The convergence test graph of <i>k</i> -point for tavorite LiFeSO ₄ F	80
Figure 5.3	The convergent test graph for Olivine LiFePO ₄	82
Figure 5.4	The convergent test graph for tavorite LiFeSO ₄ F	83
Figure 5.5	List of pseudopotential for all elements in the CASTEP	83
C	electronic options for Olivine LiFePO ₄ polyanionic Cathode	
	Materials	
Figure 5.6	Structure of LiFePO ₄ crystallized in Pnma space group with	85
C	the FM (left) and AFM (right) spin direction	
Figure 5.7	The redox voltage of LiFePO ₄ generated using GGA-PBE +	90
-	U and GGA-PBEsol + U within 2.5 eV to 4 eV Hubbard	
	values	
Figure 5.8	The band gap of LiFePO ₄ and FePO ₄ generated using GGA	91
-	+ U method for PBE and PBEsol functional. The	
	experimental band gap for LiFePO ₄ is 3.7 eV (red dotted	
	line) and for FePO ₄ is 1.9 eV (blue dotted line)	
Figure 5.9	The density of states (DOS) of LiFePO ₄	92
Figure 5.10	The density of states (DOS) of FePO ₄	93
Figure 5.11	The images for charge density for (a) Li-O bond, (b) Fe-O	97
	bond, and (c) P-O bond for olivine LiFePO ₄	
Figure 5.12	The structure of lithiated (tavorite) LiFeSO ₄ F and	98
	delithiated (maxwallite) FeSO ₄ F (Grey: Fe atom, Yellow:	
	Sulphate, Red: Oxygen, White: Fluorine, Green: Lithium)	
Figure 5.13	Graph of Hubbard value U vs. Voltage varies from U value	101
	2.5 eV to 4.0 eV calculated using GGA-PBEsol	
Figure 5.14	The partial density of state (PDOS) of lithiated structure,	103
	LiFeSO ₄ F in the range of 12 eV to 25 eV	
Figure 5.15	The partial density of state (PDOS) of delithiated structure,	104
	LiFeSO ₄ F in the range of 15 eV to 25 eV	
Figure 5.16	The images for charge density for (a) Li-O bond, (b) Fe-O	108
	bond, and (c) S-O bond for tavorite LiFeSO ₄ F	
Figure 6.1	The convergence test graph of <i>k</i> -point for layered	117
	LiFeSO ₄ OH	
Figure 6.2	The convergent test graph of cut-off energy for layered	117
	LiFeSO4OH	
Figure 6.3	The 4 possible spin configurations of layered LiFeSO ₄ OH,	118
	(a) $\uparrow \downarrow \uparrow \downarrow$, (b) $\uparrow \uparrow \downarrow \downarrow$, (c) $\uparrow \downarrow \downarrow \downarrow \downarrow$, and (d) $\uparrow \uparrow \uparrow \uparrow \uparrow$	
Figure 6.4	The structures energy graph for the 4 possible spin	119
	configuration from (a)-(d)	
Figure 6.5	Total Density of State of LiFeSO ₄ OH	126
Figure 6.6	Total partial density of state (PDOS) of L-LiFeSO ₄ OH	127
Figure 6.7	Total density of state of L-FeSO ₄ OH generated using GGA+U	129
Figure 6.8	Partial density of state (PDOS) of FeSO ₄ OH	130
Figure 6.9	Charge-density diagram of LiFeSO4OH	132
Figure 6.10	The convergence test graph of <i>k</i> -point for tavorite LiFeSO ₄ OH	133
Figure 6.11	The convergence test graph of k-point for maxwellite	133
	FeSO ₄ OH	100

Figure 6.12	The convergent test graph of cut-off energy for tavorite LiFeSO ₄ OH	134
Figure 6.13	The convergent test graph of cut-off energy for maxwellite FeSO ₄ OH	134
Figure 6.14	The voltage of tavorite LiFeSO ₄ OH against U values	137
Figure 6.15	The images for charge density for (a) Li-O bond, (b) Fe-O	139
C	bond, and (c) S-O bond for tavorite LiFeSO ₄ OH	
Figure 6.16	Tavorite (a) and layered (b) LiFeSO ₄ OH	141
Figure 6.17	The polyhedra connectivity: (a) corners sharing and (b) the edge sharing	142
Figure 6.18	The nearest neighbor (NN) distance (green dash lines) between Fe-Fe (cation) of (a) tavorite (3.622 Å) and (b) layered LiFeSO ₄ OH (3.656 Å and 3.360 Å). The blue	143
Figure 7 1	The reverse bias and forward bias condition for (a) (b)	147
Figure 7.1	The reverse bias and forward bias condition for (a) (b) lithiction and (c) (d) delithiction process of the extende	14/
	mutation and (c) (d) definitiation process of the cathode	
	states is called space charge. A depted from [101]	
Figure 7.2	The density of state (DOS) of lithiated structure LiEaSO.E	1/9
Figure 7.2	approximated using $GGA + U$	140
Figure 7.3	The spin down of Fe 3d shows little bit isolated from the	1/18
Figure 7.5	lower valance band to form small gap between -0.6 eV and -0.4 eV	140
Figure 7.4	The density of state (DOS) of delithiated structure, FeSO ₄ F	149
0	generated using GGA+U	
Figure 7.5	The DOS of lithiated of LiFeSO ₄ F generated using GGA without Hubbard U	149
Figure 7.6	The DOS of delithiated LiFeSO ₄ F generated using GGA without Hubbard U	150
Figure 7.7	The DOS of L-LiFeSO ₄ OH generated using GGA+U	152
Figure 7.8	Scale down of the DOS of LiFeSO ₄ OH from -1.0 eV to 0.2 eV	152
Figure 7.9	The DOS of delithiated L-LiFeSO ₄ OH generated using GGA + U	153
Figure 7.10	The DOS of LiFeSO ₄ OH generated using the GGA-PBE- G06 without the U correction	153
Figure 7.11	The DOS of FeSO ₄ OH generated using the GGA-PBE-G06	154
C	without the U correction	
Figure 7.12	DOS of tavorite LiFeSO4OH generated using GGA+U	155
Figure 7.13	The VB of tavorite LiFeSO ₄ OH shows no energy gap	155
C	between Fe 3d spin down and lower VB allowing the holes	
	and electrons conduction	
Figure 7.14	DOS of maxwallite LiFeSO ₄ OH generated using GGA+U	156
Figure 7.15	The DOS of LiFeSO ₄ OH generated using GGA without U	156
-	potential	
Figure 7.16	The DOS of FeSO ₄ OH generated using GGA without U potential	157
Figure 7.17	The conduction band of the LiFeSO ₄ F	159
Figure 7.18	The conduction band of LiFeSO ₄ OH	159
Figure 7.19	The conduction band of tavorite LiFeSO4OH	160

Figure 7.20	The schematic diagram of cathode material if it is coated	162
	with n-type semiconductor: (a) for lithiation and (b) for	
	delithiation mechanism. Adapted from [151]	
Figure 7.21	The schematic diagram of cathode material if it is coated	163
	with Li-rich material: (a) for lithiation and (b) for	
	delithiation mechanism. Adapted from [191]	
Figure 8.1	The structure of (a) Pristine LiFeSO ₄ OH (b)	166
	LiFe _{0.75} V _{0.25} O ₄ OH and (c) LiFeS _{0.75} V _{0.25} O ₄ OH. Purple,	
	blue, grey, yellow and white is lithium, iron, vanadium,	
	sulphur and hydrogen atom, respectively	
Figure 8.2	The density of state (DOS) of LiFeSO ₄ OH where red	170
	pattern line represent Fe 3d orbital and black line is total	
	DOS	
Figure 8.3	The density of state (DOS) of FeSO ₄ OH where red pattern	170
-	line represent Fe 3d orbital and black line is total DOS	
Figure 8.4	The density of state (DOS) of LiFe _{0.75} V _{0.25} SO ₄ OH where	171
-	red pattern line represents Fe 3d orbital blue pattern is V 3d	
	and black line is total DOS	
Figure 8.5	The density of state (DOS) of Fe _{0.75} V _{0.25} SO ₄ OH where red	172
C	pattern line is Fe 3d, blue pattern is V 3d and black line is	
	total DOS	
Figure 8.6	The charge density of LiFe _{0.75} V _{0.25} SO ₄ OH where (a) is Li-	174
J	O, (b) F-O, (c) S-O and (d) V-O bond	

LIST OF TABLES

Table	Caption	Page
Table 2.1	Side by side comparison of different types of batteries. Adapted from [51]	13
Table 2.2	Comparison of structural parameters of LiMO ₂ between first principles calculation and available experimental data. Taken from [36]	23
Table 4.1	The atomic position and lattice parameter for the LiFePO ₄ with Pnma space group [145]	65
Table 4.2	The convergence threshold parameters for the geometrical optimization calculation	66
Table 5.1	The calculated result of the lattice parameter of (a) LiFePO ₄ and (b) FePO ₄ generated using GGA-PBE and GGA-PBEsol compared with experiment and other computational works	85
Table 5.2	Band gap (BG) generated using GGA-PBE and GGA-PBEsol for the LiFePO ₄ and FePO ₄	87
Table 5.3	The lattice parameter of LiFePO ₄ and FePO ₄ generated using GGA-PBE + U with U value varied form 0 eV to 4 eV	88
Table 5.4	The lattice parameter of LiFePO ₄ and FePO ₄ generated using GGA-PBEsol + U with U value varied form 0 eV to 4 eV	89
Table 5.5	The band gap of LiFePO ₄ and FePO ₄ generated using the U value from 4.0 to 4.5 eV	91
Table 5.6	Bond length and Bond Order (BO) of the LiFePO ₄	95
Table 5.7	The atomic population of the atoms in the LiFePO ₄ before and after Li extraction	96
Table 5.8	Comparison between three exchange-correlation functional, LDA-CAPZ, GGA-PBE and GGA-PBEsol for lattice parameter	99
Table 5.9	The optimized lattice parameters of LiFeSO ₄ F in the range of 0.0 eV to 4 eV	101
Table 5.10	Bond length and bond order (in bracket) for lithiated and delithiated state for LiFeSO ₄ F	106
Table 5.11	The atomic population charge of the atom in the lithiated and delithiated LiFeSO ₄ F	107
Table 6.1	Lattice parameters of L-LiFeSO ₄ OH and FeSO ₄ OH generated in AFM and FM configuration using the GGA-PBE, GGA- PBE + G06, and GGA-PBE-TS and compared with other computational work	120
Table 6.2	The open circuit voltage (OCV) of L-LiFeSO ₄ OH generated using various functional	122
Table 6.3	The bond length and bond order (in bracket) for the layered lithiated and delithiated LiFeSO ₄ OH	123
Table 6.4	Mulliken atomic population of all ions in the LiFeSO ₄ OH before and after delithiation, and their differences in charges Δe	124
Table 6.5	The optimized lattice parameters for tavorite and maxwellite structure using LDA, GGA-PBE and GGA-PBEsol compared with the experimental data [96]	136

Table 6.6	Mulliken atomic population charge for tavorite and	138
	maxwallite obtain from mulliken analysis	
Table 6.7	Bond length and bond order (in bracket) for lithiated	138
	(tavorite) and delithiated (maxwellite) state of the	
	LiFeSO4OH	
Table 8.1	The lattice parameter calculated using GGA-PBE and GGA-	168
	PBE + Grimme (G06) dispersion correction	
Table 8.2	The atomic position of LiFe _{0.75} V _{0.25} SO ₄ OH calculated based	169
	on GGA-PBE + G06	
Table 8.3	Bond length (BL) and bond order (BO) of pristine	173
	LiFeSO ₄ OH and LiFe _{0.75} V _{0.25} SO ₄ OH for lithiated and	
	delithiated states	

LIST OF ABBREVIATIONS

AFM	Antiferromagnetic
BFGS	Broyden-Fletcher-Goldfarb-Shanno
BG	Band Gap
BL	Bond Length
BO	Bond Order
CASTEP	Cambridge Serial Total Energy Package
CB	Conduction Band
CD	Charge Density
СТ	Charge-Transfer
DFT	Density Functional Theory
DFT-D	Density Functional Theory Dispersion
DFT+U	Density Functional Theory plus Hubbard U Parameter
DOS	Density of States
FM	Ferromagnetic
G06	Grimme
GGA	Generalized Gradient Approximation
GWA	GW approximation
HF	Hartree-Fock
LDA	Local Density Approximation
LIB	Lithium ion Battery
MH	Mott-Hubbard
OCV	Open Circuit Voltage
PBE	Perdew-Burke-Ernzerhof Scheme
PBEsol	Perdew-Burke-Ernzerhof Scheme for Exchange in Solid and Surface
SIC	Self-interaction correction
TS	Tkatchenko–Scheffler
VB	Valance Band
vdW	Van der Waals

CHAPTER ONE

INTRODUCTION

1.1 Background

Nowadays, the fully harness renewable energy and ideal electrical transportation become the urge factor to researchers to face the global warming, depletion of fossil fuels and pollution. Many scientists across the globe have conducted many researches in order to achieve the green technology. To realize it, large enough of electrical energy storages are required to make sure they operate for the reasonable amount of time and able to deliver demanded power. The best available option to meet this demand is using battery which can convert the electrical energy to the chemical energy or vice versa.

So far, Li-ion battery is still the best offered technology considering of its high energy density [1]. This is because of high energy density that could be provided by lithium ion batteries make them as the most suitable candidate for the application. However, other issues such as safety and cost of the batteries are also crucial to be concerned particularly for high power application such as electric vehicle (EV) and plug in hybrid electric vehicle (PHEV) [2,3]. Since the commercialization of the layered LiCoO₂ by Sony in 1990 [4,5], therefore it has become the world attention due to its high theoretical gravimetric capacity (273.84 mAh g⁻¹) [6]. However, its large volume production has been hampered by high cost and toxicity of cobalt (Co)[7–9]. Additionally, the pristine LiCoO₂ are thermally unstable and can cause thermal runway, thus the battery potentially to explode when used for high power application [10,11].

Besides layered oxide materials, most researches are now focusing in finding new high performance electrode materials particularly in polyanionic material. In 1997, Padhi et al. [12] have successfully synthesized a widely accepted polyanionic cathode material, LiFePO₄. This cathode material possesses reasonable specific capacity, improved safety, low cost, high stability and environmentally benign properties, subsequently leads to its commercialization [13–15]. It also has a high theoretical capacity (170 mAh g⁻¹) and high reversible voltage (3.5 V) [15]. However, this LiFePO₄ suffers poor electronic and ionic conductivity which requires further modification and treatment such as nano-sizing, carbon coating and material doping [16,14,17], thus increases the synthesization cost.

In recent past, Recham et al. [18] revealed a new fluorosulphate cathode material viz. LiFeSO₄F that crystallized in space group of P-1 with tavorite structure. This material was designed by replacing the PO₄³⁻ with SO₄²⁻ and co-joining the F⁻ atom to increase the electronegativity. It has shown slightly increasing redox potential 3.6 V vs. Li^0/Li^+ which is higher than LiFePO₄ (3.45 V). Its ionic conductivity is found to ~10³ higher than that of LiFePO₄: ~ 4 x 10⁻⁶ Scm⁻¹ for LiFeSO₄F and 2 x 10⁻⁹ Scm⁻¹ for LiFePO₄ at 147 °C [18]. This could obviate the need of carbon coating or nanosizing that eventually lowering the cost and density of the material.

Moreover, in the polyanionic electrode such as LiFeSO₄F, the iono-covalency of the M-X bond plays an important role in determining the redox potential. The higher electronegativity of SO_4^{2-} compared to the PO_4^{3-} possesses the higher inductive effect that draws more electrons near the SO_4^{2-} and thus decreases the covalency of the M-X (M = transition metal, X = ligand) bond. However, there is little report on the

ionic and covalent characters of the LiFeSO₄F by means of the first principles approach. Previous studies [17,19] revealed that the first-principles method using the density functional theory (DFT) is a powerful tool to study the electronic structures of cathode materials and even novel materials that have not been synthesized such as GeTiO₃ [20–22] and SnTiO₃ [23–25]. Using this method, the ionic and covalent character of the materials can easily be monitored using bond length (BL) and bond order (BO) calculation and can also be supported by effective charge Q* calculation. Therefore, in this thesis the electronic and structural properties of LiFeSO₄F have been investigated using DFT implemented in the Cambridge Serial Total Energy Package (CASTEP) computer code.

The work is then continued by computationally investigating and comparing the properties between hydrosulphate, LiFeSO4OH and fluorosulphate, LiFeSO4F cathode materials. This hydrosulphate, LiFeSO4OH cathode material is hypothesized to be sustainable alternative because of the F⁻ ion is replaced with OH⁻ ion. This material crystallized into two types of polymorph: one is a layered structure which was recently discovered by Subban et al. [26], and the other is a tavorite structure [27]. Both structures were synthesized via different experimental processes. The layered structure was synthesized using the ball-milling approach, whereas the tavorite structure was synthesized using the electrochemical lithiation of FeSO4OH [28]. The tavorite LiFeSO4F. The new layered phase of LiFeSO4OH was synthesized from caminite related mineral. This cathode material showed reversibly 0.7 Li⁺ with an average voltage of 3.6 vs. Li⁺/Li⁰ which is the same with tavorite LiFeSO4F. However, the difference of voltage between these cathode materials is still unclear [29]. Therefore, this thesis focuses on the investigation of the factors that

lead to the difference of voltage between tavorite LiFeSO₄OH and layered LiFeSO₄OH and also the similarity of voltage between layered LiFeSO₄OH and tavorite LiFeSO₄F.

As well known, calculations using conventional exchange correlation in DFT have faced several problems to generate the experimental structure of the layered LiFeSO₄OH. Therefore, previous works [30,31] have proved to improve the experimental structure and voltages using van der Waals (vdW) dispersion correction on the layered cathode materials such as LiCoO₂ and LiV₂O₅. With the same motivation, in this thesis, the vdW dispersion correction has been applied to the exchange correlation GGA-PBE to comprehend the effect of the implementation of the correction.

According to Subban et al. [26], the layered LiFeSO₄OH was able to deliver $\sim 100-110 \text{ mAh g}^{-1}$ at C/20 rate. However, this is still far from the theoretical capacity and it also then dropped to 93 mAh g⁻¹ at C rate. Therefore in this thesis, enhancement of the performance of LiFeSO₄OH cathode material was performed by substituting vanadium on the LiFeSO₄OH. In this work, structural and electronic properties such as the lattice parameter, density of state (DOS), bond length (BL), bond order (BO) and charge density were determined using the first principles approach. In addition, van der Waals (vdW) dispersion correction has been taken into account for calculating the structural parameter.

1.2 Challenges and Motivation

A layered LiFeSO₄OH cathode material offers greener approach compared to fluorosulphate-based because the absence of hazardous fluorine, F^- , thus it is worthy to be further investigated. To date, there is very little study on a new phase of

LiFeSO4OH has been reported and hence, there is not much reliable information could be retrieved about it. Moreover, Subban et al. [26] reported that using traditional DFT method has encountered difficulties in simulating the layered LiFeSO4OH cathode material and suggested a need for new methods to reliably predict the structure and electrochemical properties of the material. Therefore in this thesis, different with literatures, the challenge has been taken to simulate this material using DFT treated by van der Waals dispersion correction method (G06 and TS scheme). However, in enhancing specific capacity of this layered material, substitution of vanadium into layered LiFeSO4OH has been conducted. To the best of knowledge, this is the first study on the properties of a new LiFe_{0.75}V_{0.25}SO4OH cathode material using first principles method. Based on its properties, thus, this new material could be a promising candidate as a cathode material in lithium ion batteries.

1.3 Problems Statement

To correctly obtain electronic properties of cathode materials, the DFT + U method is very essential to be performed especially for the compounds containing transition metal or rare earth material. This is because the calculated results using conventional DFT method always fails to reach agreement with the experimental electronic properties values [32,33]. In the cathode material, the electronic properties such as band gap, density of state and voltage are always underestimated without U value applied to the d orbital of the transition metal [34–38]. Therefore, the DFT + U method is barely suitable to be used in calculating the electronic properties of cathode materials.

The layered LiFeSO₄OH has just been discovered in 2013 [26] as an alternative cathode material. However, to date there is very little information reported on this

cathode material and thus providing opportunities for further exploration. Moreover, this layered cathode material has been reported to have problem to be simulated using traditional DFT (GGA, LDA) which required another approaches [39]. This problem is also similar to other layered compounds such as LiCoO₂ and LiV₂O₅ [30,31]. This shows that the exchange correlation functional such as GGA or LDA needs a treatment to improve the description of the properties such as structural and electronic properties of the layered compound. Therefore, to overcome this problem, the van der Waals dispersion correction has been adopted.

The hydrosulphate system LiFeSO₄OH has two types of polymorph which crystallized in tavorite and layered structure depending on the synthesization method. The tavorite and layered structure exhibited 3.2 V and 3.6 V of redox potential, respectively. Until now, the fundamental reason on why differences between the redox potential of both structures happened are still unclear [29]. Moreover this also raises a question why the layered LiFeSO₄OH has the same voltage with the tavorite LiFeSO₄F. However, the experimental value of specific capacity of the layered LiFeSO₄OH [26] has still far from the theoretical capacity. Therefore, efforts to seek a new promising cathode material that could possess a higher specific capacity are necessary. In this thesis, substitution of vanadium into LiFeSO₄OH has been conducted.

1.4 Research Objectives

Objectives of this research can be described as follows:

1. **To elucidate** the effects of addition of Hubbard U parameter to DFT on the calculation of structural and electronic properties of LiFePO₄ and LiFeSO₄F.