ENHANCEMENTS OF ARMORED VEHICLE STABILITY USING ADAPTIVE CONTROLLER

VIMAL RAU A/L APAROW

Thesis submitted to the Center for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy (Mechanical Engineering)

April 2018

DEDICATIONS

To my beloved wife Anusiya Devi and our baby, my parents, parents-in-law, siblings and

God

ABSTRACT

In the military vehicle application, it is a well-known fact that the armored vehicle will lost its directional stability once the armored vehicle is in lateral direction using large caliber gun while in a dynamic condition. This is because the gun recoil force acting at the center of weapon platform produces unwanted yaw moment at the body center of gravity of the armored vehicle. Recently, most of the military vehicles need to be in static condition during firing. Besides having reduced mobility, firing in static condition can cause the armored vehicle to be easily targeted for counterattack by the enemies. In order to overcome this problem, an active safety system namely Yaw Disturbance Rejection Control (YDRC) is proposed in this study. The proposed active safety system is used to improve the handling performance and maintain the directional stability of the vehicle by providing correctional steering angle to the Pitman arm steering mechanism. The steering correction is intended to reject the unwanted yaw motion and re-position back the armored vehicle back to its intended direction of travel path after firing. In this study, the proposed YDRC system is designed based on two outer loops namely Firing-On-the-Move (FOM) and Active Front Wheel Steering (AFWS). These outer loop control designs are developed to improve vehicle dynamic stability performance in terms of handling responses and directional path of the armored vehicle. The YDRC system is tested in both simulation and experimental studies using a prototype armored vehicle namely Half Scale SIBMAS. For simulation, YDRC system is tested on a validated 15 DOF armored vehicle via Softwarein-the-Loop (SIL) simulation. Then, the performance of the YDRC system is enhanced using Neuro-PI controller by updating the Neural Network controller parameters based on back propagation gradient training algorithm. In order to evaluate the advantages of adaptive Neuro-PI controller experimentally, Hardware-in-the-Loop (HIL) simulation is performed using Pitman arm steering in prototype Half Scale SIBMAS using various testing criteria. Finally, the effectiveness of the proposed YDRC is evaluated on actual firing test via Real Implementation Test Scenario (RITS) using Half Scale SIBMAS based on critical firing condition. It can be noted that the lateral motion is improved up to 65% while the yaw response is improved almost 50% from conventional armored vehicle.

ABSTRAK

Dalam aplikasi kenderaan ketenteraan, diketahui bahawa kenderaan berperisai akan kehilangan kestabilan dinamik dan arah pemanduan ketika bergerak sambil menembak dengan menggunakan senjata berkaliber besar pada arah sisi. Ini disebabkan oleh impak yang terhasil daripada senjata dan menghasilkan gerakan rewang yang tidak diinginkan pada pusat graviti kenderaan berperisai. Oleh itu, kebanyakan kenderaan berperisai berada pada kedudukan statik semasa menembak. Walau bagaimanapun, keadaan ini menyebabkan kenderaan berperisai menjadi sasaran mudah serangan balas oleh musuh. Untuk mengatasi masalah ini, sistem keselamatan aktif iaitu pengawal penolakan gangguan rewang dicadangkan dalam kajian ini. Sistem ini digunakan untuk meningkatkan prestasi pengendalian dan mengekalkan arah pergerakan kenderaan berperisai ketika menembak dengan menghasilkan sudut kemudi yang bersesuaian menggunakan sistem kemudi Pitman. Pengawal sistem kemudi tersebut digunakan untuk mengurangkan pergerakan rewang yang tidak diingini dan mengembalikan semula kedudukan kenderaan berperisai ke hala tuju yang ditetapkan selepas tembakan. Dalam kajian ini, pengawal penolakan gangguan rewang yang dicadangkan telah direka berdasarkan dua reka bentuk kawalan luar iaitu penembakan ketika memandu dan sistem kemudi aktif roda hadapan. Reka bentuk kawalan luar lingkaran ini dibangunkan bagi meningkatkan prestasi kestabilan dinamik kenderaan tersebut dari segi prestasi pengendalian dan arah tuju laluan kenderaan. Sistem ini diuji secara simulasi dan ujikaji menggunakan kenderaan prototaip berskala separuh SIBMAS. Dalam ujian simulasi, sistem ini diuji menggunakan model 15-darjah kebebasan kenderaan berperisai yang telah disahkan secara gegelung-di-dalam-perisian. Seterusnya, prestasi sistem ini dipertingkatkan lagi dengan menggunakan pengawal Neuro-PI dimana parameter pada rangkaian Neural dikemaskini dengan menggunakan algorithma latihankecerunan-penyebaran-belakang. Untuk menilai kelebihan algorithma pengawal Neuro-PI secara ujikaji, gegelung-di-dalam-perkakasan dilaksanakan menggunakan sistem kemudi Pitman sebenar berdasarkan beberapa kriteria tembakan. Akhir sekali, keberkesanan algoritma yang dicadangkan diuji menggunakan kenderaan prototaip berskala separuh SIBMAS dalam keadaan tembakan kritikal. Hasilnya, prestasi gerakan pada arah sisi kenderaan berperisai dapat ditingkatkan sehingga 65% serta tindak-balas rewang telah meningkat hampir 50% berbanding dengan kenderaan berperisai tanpa sistem yang dicadangkan.

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my main supervisor, Associate Professor Dr. Khisbullah Hudha for his excellent guidance, support and constant encouragement throughout my research. I also would like to thank Dr Zulkiffli Abd Kadir and Miss Hafizah Amer for their sincere advices and support during the research. I gratefully acknowledge Long Term Research Grant Scheme (LRGS), MyPhD program from Minister of Higher Education and Universiti Pertahanan Nasional Malaysia (UPNM) for providing the financial support throughout my study.

Furthermore, I would like to take this opportunity to thank my colleagues especially lab mate in automotive laboratory of UPNM, Muhammad Luqman Hakim Abd Rahman, Abdurahman Dwijotomo, Mohd Sabirin Rahmat, Akhimullah Subari, Abdul Muhaimin Idris, Hafiz Ikhwan Amin as well as Izzat Satar for their truthful support in conducting my research. I also want to express my appreciation to Mr. Azman, automotive laboratory technician who provided positive feedback in machining as well as providing laboratory equipment for research purpose.

Finally, my deepest thanks to my dear wife, Anusiya Devi, my parents, Aparow Ramaloo and Gani Samma Soorinarayanan, my dear siblings, Vijaya Rau Aparow and Hirosha Aparow, as well as my in-laws. Their continuous prayers and moral support encouraged me to continue my research up to this level.

APPROVAL

I certify that an Examination Committee has met on 9th April 2018 to conduct the final examination of Ahmad bin Abu on his degree thesis entitled 'Enhancements of Armored Vehicle Stability using Adaptive Controller'. The committee recommends that the student be awarded the Doctor of Philosophy (Mechanical Engineering).

Members of the Examination Committee were as follows.

Aidy Bin Ali, PhD

Professor Department of Mechanical Engineering, Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Khairol Amali Bin Ahmad, PhD

Lt Col Associate Professor Department of Mechanical Engineering, Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Waleed Fekry Faris, PhD

Professor Kulliyyah of Engineering International Islamic University Malaysia, Gombak Campus (External Examiner)

Sallehuddin Bin Mohamed Haris, PhD

Associate Professor Department of Mechanical and Materials Engineering Universiti Kebangsaan Malaysia (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfillment of the requirement for the degree of **Doctor of Philosophy** (Mechanical Engineering). The members of the Supervisory Committee were as follows.

Khisbullah Hudha, PhD

Associate Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Megat Mohammad Hamdan Bin Megat Ahmad, PhD

Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Shohaimi Bin Abdullah, PhD

Brigadier General Professor Deputy Vice Chancellor Research, Innovation, & Quality Assurance SEGi University (External Co-Supervisor)

DECLARATION UNIVERSITI PERTAHANAN NASIONAL MALAYSIA DECLARATION OF THESIS

Author's full name	: Vimal Rau A/L Aparow
Date of birth	: 3 rd October 1987
Title	: Enhancements of Armored Vehicle Stability using Adaptive Controller
Academic session	: June 2014 – April 2018

I declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the Official Secret Act
	1972)
RESTRICTED	(Contains restricted information as specified by the organization
	where research was done)
 OPEN ACCESS	I agree that my thesis to be published as online open access

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE OF STUDENT SIGNATURE OF SUPERVISOR

IC/PASSPORT NO.

NAME OF SUPERVISOR

Date:

Date:

TABLE OF CONTENTS

DEDICATIONS	I
ABSTRACT	п
ABSTRAK	ш
ACKNOWLEDGEMENTS	IV
APPROVAL	V
DECLARATION	VII
TABLE OF CONTENTS	VIII
LIST OF TABLES	XIII
LIST OF FIGURES	XV
LIST OF ABBREVIATION AND SYMBOLS	XX
CHAPTER 1	1
INTRODUCTION	1
1.1 Overview	1
1.2 Problem Statement	2
1.3 Background of the study	3
1.4 Objectives of the study	4
1.5 Scope of the study	5
1.6 Methodology	6
1.7 Summary of Research Contribution	9
1.8 Structure and layout of the thesis	11
CHAPTER 2	13
LITERATURE REVIEW	13
2.1 Overview	13
2.2 Classification of armored fighting vehicle	14
2.3 Current researches on active safety system for armored vehicle	15
2.3.1 Current researches on active stability performance for armored vehicle	15
2.3.2 Current researches on active defense system for armored vehicle	17

2.4 Limitation of the existing active safety system in armored vehicle	19
2.5 Previous research works related to vehicle stability control performance	21
2.5.1 Active Front Wheel Steering Control	21
2.5.2 Electronic Stability Control	25
2.5.3 Active Disturbance Rejection Control	29
2.6 Model-in-the-Loop simulation	33
2.6.1 Software-in-the-Loop simulation	34
2.6.2 Hardware-in-the Loop simulation	34
2.7 Potential research direction in armored vehicle due to gun recoil force	35
2.8 Process Flow of Developing Yaw Disturbance Rejection Control	37
2.9 Summary	38
CHAPTER 3	41
MODELLING AND VALIDATION OF FIFTEEN DEGREE OF FREEDOM	
WHEELED ARMORED VEHICLE	41
3.1 Overview	41
3.2 Modeling Assumptions	43
3.3 The 15 DOF Armored Vehicle Model	44
3.3.1 A 7 DOF Vehicle Ride Model	45
3.3.2 Pacejka Tire Model	51
3.3.3 A 7 DOF Vehicle handling model	53
3.3.4 Single DOF Gun Model	59
3.4 Validation of the 15 DOF Armored Vehicle Model	60
3.4.1 Development of Instrumented 4x4 Armored Vehicle	61
3.4.2 Armored Vehicle Model and Simulation Parameters	64
3.4.3 Vehicle Parameters and Testing Procedures	65
3.5 Model Validation Results	68
3.5.1 Testing on Handling Behaviors	69
3.5.2 Testing on the Effect of Recoil Force	73
3.6 Summary	81

CHAPTER 4	83
MODELING, VALIDATION AND CONTROL OF ELECTRONICALLY	
ACTUATED PITMAN ARM STEERING MECHANISM	83
4.1 Overview	83
4.2 Pitman arm steering system model	85
4.2.1 Steering column model	87
4.2.2 Electric DC motor model	87
4.2.3 Universal joint model	89
4.2.4 Hydraulic Power Assisted	89
4.2.5 Pitman arm link	91
4.2.6 Steering linkage	92
4.2.7 Wheel dynamic motion	92
4.3 Validation of 3 DOF Pitman arm steering model	94
4.3.1 Pitman arm steering test rig configuration	95
4.3.2 Electronic circuit unit (ECU) design and configuration	95
4.3.3 Hardware-in-the-loop configuration of Pitman arm steering	97
4.3.4 Validation procedures	100
4.3.5 Steering validation results	100
4.4 Position tracking control of Pitman arm steering system	102
4.4.1 Evaluation using Software-in-the-Loop (SIL) simulation	103
4.4.2 Evaluation using Hardware-in-the-Loop (HIL) simulation	104
4.5 Simulation parameter	105
4.6 Performance evaluation of position tracking control	106
4.7 Summary	112
CHAPTER 5	113
FINDING THE OPTIMUM CONTROL STRUCTURE FOR YAW	
DISTURBANCE REJECTION CONTROL SYSTEM	113
5.1 Overview	113
5.2 Yaw disturbance rejection control system	114
5.2.1 Inner loop control design	116

5.2.2	Outer loop control design	117
5.3 Optin	nization using Multi-Objective Genetic Algorithm (GA)	127
5.4 Perfo	ormance Evaluation of Yaw Disturbance Rejection Control Structures	131
5.4.1	Condition A: Vehicle speed at 40 km/h and 45° firing angle	132
5.4.2	Condition B: Vehicle speed at 40 km/h and 90° firing angle	134
5.4.3	Condition C: Vehicle speed at 60 km/h and 45° firing angle	136
5.4.4	Condition D: Vehicle speed at 60 km/h and 90° firing angle	137
5.5 Sum	mary	140
CHAPTER	6	142
PERFORM	ANCE EVALUATION OF YAW DISTURBANCE REJECTION	
CONTROL	USING NEURO-PROPORTIONAL INTEGRAL CONTROLLER	142
6.1 Over	view	142
6.2 Ident	ification of the most dominant outer loop control	144
6.2.1	Overview of Taguchi Approach	145
6.2.2	Orthogonal Array	146
6.2.3	Analysis of means (ANOM)	149
6.2.4	Analysis of variance (ANOVA)	150
6.3 Desi	gn and Optimization of Neuro-Proportional Integral controller	151
6.3.1	Artificial Neural Network system	152
6.3.2	Multilayer Perceptron Neural Network for FOM outer loop	153
6.4 Optin	nization of Neuro-PI using Multi-Objective Genetic Algorithm	157
6.5 Simu	lation parameters	158
6.6 Perfo	ormance evaluation of YDRC using Neuro-PI controller	158
6.6.1	Condition A : Vehicle speed at 40 km/h and 45° firing angle	159
6.6.2	Condition B: Vehicle speed at 40 km/h and 90° firing angle	160
6.6.3	Condition C : Vehicle speed at 60 km/h and 45° firing angle	162
6.6.4	Condition D: Vehicle speed at 60 km/h and 90° firing angle	164
6.7 Sum	mary	166

CHAPTER 7	
YAW DISTURBANCE REJECTION CONTROL USING ADAPTIVE	
NEURO-PROPORTIONAL INTEGRAL CONTROLLER: SIMULATION	
AND EXPERIMENTAL INVESTIGATION	168
7.1 Introduction	168
7.2 Back Propagation Training Algorithm for Neuro-PI	170
7.2.1 Performance index for back propagation algorithm	171
7.2.2 Chain rule	172
7.2.3 Derivation of parameter update formula	174
7.3 Experimental configuration using IMC Cronos Compact and IMC Studio	180
7.4 Controller implementation from Matlab/SIMULINK into IMC Studio	183
7.5 Performance evaluation of YDRC using adaptive Neuro-PI controller	188
7.5.1 Software $-in - the - Loop$ (SIL) simulation results	188
7.5.2 Hardware $-$ in $-$ the $-$ Loop (HIL) simulation results	194
7.5.3 Real-Implementation Test Scenario (RITS) results	198
7.6 Summary	201
CHAPTER 8	204
CONCLUSION	204
8.1 Overview	204
8.2 Conclusion	205
8.3 Recommendation and future works	208
REFERENCES	210
APPENDIX A: GENETIC ALGORITHM OPTIMIZATION CODING	225
APPENDIX B: ASSEMBLY DRAWINGS OF HALF SCALE SIBMAS	226
APPENDIX C: DETAIL DRAWING OF HALF SCALE SIBMAS FRAME	
APPENDIX D: DETAIL DRAWING OF GUN RECOIL MECHANISM	
APPENDIX E: IMC DAQ AND SENSOR SPECIFICATIONS	229
BIODATA OF STUDENT	
LIST OF PUBLICATIONS	259

LIST OF TABLES

Table No	TitlePage
Table 3.1	Values of Coefficients a1 to a11 for a vehicle for Fz(kN) (Wong,
	2008)
Table 3.2	Parameter of vehicle and gun model
Table 3.3	Percentage of RMS error for double lane change test
Table 3.4	Percentage of RMS error for step steer test
Table 3.5	Percentage of RMS Value during firing validation
Table 4.1	Parameter of the Pitman arm steering model
Table 4.2	Percentage value of RMS difference 102
Table 4.3	Controller parameters for inner and outer loop 105
Table 4.4	SIL and HIL Responses of Pitman arm steering 111
Table 5.1	Simulation data analysis between firing moment against yaw rate 121
Table 5.2	Analysis between firing moment and yaw rate 124
Table 5.3	Genetic algorithm parameters 131
Table 5.4	Controller parameters for all structures
Table 5.5	Imaginary skyhook damper parameters 132
Table 6.1	Orthogonal array for $L_9(3^4)$
Table 6.2	Controller parameters, upper and lower bound values
Table 6.3	Analysis of controller parameters using orthogonal array of $L_9(3^4)$ 148
Table 6.4	Total of SNR for different factors and levels for controller parameters 149
Table 6.5	ANOM for different factors and levels 150

Table 6.6	Percentages of contribution of the outer loops on the YDRC structure 151
Table 7.1	Sensors connection to the IMC Cronos Compact
Table 7.2	Percentage difference RMS value between HIL and SIL 197

LIST OF FIGURES

Figure No.	Title Page
Figure 1.1	Research flow chart
Figure 2.1	Structure of AFWS Fuzzy logic controller (Jian et al., 2010)
Figure 2.2	Vehicle yaw control system (Yue <i>et al.</i> , 2013)
Figure 2.3	Control strategy for BP neural network PID control (Wei et al., 2013) 24
Figure 2.4	AYC control algorithm based on self-cornering threshold PD control
	(Song <i>et al.</i> , 2010)
Figure 2.5	μ Control Structure of Electronic Stability Program (Yuan <i>et al.</i> , 2010) 27
Figure 2.6	Strucure of virtual controller and hardware configuration
	(Li and Hong, 2009)
Figure 2.7	IESP conceptual control diagram using ABS and Yaw-Torque
	system (Piancastelli et al., 2010)
Figure 2.8	AFWS control system using ARDC strategy (Yiran and Hui, 2010)
Figure 2.9	ADRC for yaw moment disturbance rejection control
	(Karaman <i>et al.</i> , 2006)
Figure 3.1	A 3D diagram of 4x4 armored vehicle model
Figure 3.2	A 7DOF Ride model
Figure 3.3	A 2D diagram of 7 DOF Handling model of armored vehicle
Figure 3.4	Roll motion effect due to lateral acceleration
Figure 3.5	Pitch motion effect due to longitudinal acceleration
Figure 3.6	Free body diagram of wheel

Figure 3.7	Sensor and DAQ configuration layout of Half Scale SIBMAS	
	(Hudha et al., 2015)	62
Figure 3.8	Sensors and DAQ Instrumentation	63
Figure 3.9	Sensors connector block to IMC DAQ device	64
Figure 3.10	Simulation model of 15 DOF Armored Vehicle	65
Figure 3.11	Instrumented Half Scale prototype SIBMAS	65
Figure 3.12	Step steer test procedure (ISO 4138, 2012)	67
Figure 3.13	Double lane change test procedure (ISO 3888, 1999)	67
Figure 3.14	Firing in dynamic test procedure	68
Figure 3.15	Armored vehicle prototype and testing procedures	69
Figure 3.16	Handling test using double lane change condition	71
Figure 3.17	Handling test using step steer condition	72
Figure 3.18	Instrumented gun simulator with Half Scale SIBMAS	73
Figure 3.19	Actual firing test scenario at 90°	74
Figure 3.20	Validation of firing recoil force using gun simulator	74
Figure 3.21	Lateral dynamics of armored vehicle due to external disturbance	76
Figure 3.22	Validation of the armored vehicle at 40 km/h	78
Figure 3.23	Validation of the armored vehicle at 60 km/h	80
Figure 4.1	Pitman arm steering system	85
Figure 4.2	Pitman arm steering system schematic diagram	86
Figure 4.3	Electrical and mechanical model of DC motor	87
Figure 4.4	Universal joint of Pitman arm steering model	89
Figure 4.5	System configuration using Pitman arm link	91

Figure 4.6	Overall configuration of Pitman arm steering model using
	electronically actuated DC motor model
Figure 4.7	Pitman arm steering test rig configuration
Figure 4.8	Circuit design using microcontroller, opto isolator and H-Bridge driver96
Figure 4.9	Hardware-in-the-loop process flow
Figure 4.10	Double lane change test response 100
Figure 4.11	Slalom test response
Figure 4.12	Step steer test using steering angle of 180° response 101
Figure 4.13	Software-In-the-Loop control structure 104
Figure 4.14	Hardware-In-the-Loop control structure
Figure 4.15	Wheel angle using sine input at 0.5 hz 106
Figure 4.16	Wheel angle using sine input at 1.0 hz 107
Figure 4.17	Wheel angle using square input at 0.5 hz 108
Figure 4.18	Wheel angle using square input at 1.0 hz 108
Figure 4.19	Wheel angle using sawtooth input at 0.5 hertz 109
Figure 4.20	Wheel angle using sawtooth input at 1.0 hertz 109
Figure 4.21	Wheel angle using step input response at 4.5 degree 110
Figure 4.22	Wheel angle using step input response at 9 degree 111
Figure 5.1	Inner loop control design 116
Figure 5.2	Outer loop control using yaw rate with vehicle sideslip angle feedback 118
Figure 5.3	Vehicle sideslip angle due to recoil force
Figure 5.4	Armored vehicle with imaginary skyhook damper configuration 120
Figure 5.5	Relationship between yaw rate and lateral force 121

Figure 5.6	Outer loop control using Estimated Yaw and Lateral Force	
	Rejection Feedback (EsYLaR) 12	2
Figure 5.7	Relationship between firing moment and yaw rate	.3
Figure 5.8	Armored vehicle with linear and rotary skyhook dampers	.5
Figure 5.9	Outer loop control using Estimated Recoil Moment with Summation	
	of Moment as Reference (SuM-FiME) 12	.6
Figure 5.10	Outer loop control using Estimated Recoil and Yaw Rate with	
	Summation of Moment as Reference (SuM-FYME)12	.7
Figure 5.11	Flowchart of optimization process using genetic algorithm	0
Figure 5.12	Armored vehicle performance at speed 40 km/h and 45° firing angle 13	4
Figure 5.13	Armored vehicle performance at speed 40 km/h and 90° firing angle 13	6
Figure 5.14	Armored vehicle performance at speed 60 km/h and 45° firing angle 13	7
Figure 5.15	Armored vehicle performance at speed 60 km/h and 90° firing angle 13	9
Figure 6.1	Yaw Disturbance Rejection Control using FOM-AFWS loop 14	4
Figure 6.2	Artificial neuron structure	2
Figure 6.3	YDRC control structure using with Neuro-PI controller15	4
Figure 6.4	Three layers neural network for updating PI controller	5
Figure 6.5	Firing angle of 45° at armored vehicle speed of 40 km/h 16	0
Figure 6.6	Firing angle of 90° at armored vehicle speed of 40 km/h 16	2
Figure 6.7	Firing angle of 45° at armored vehicle speed of 60 km/h 16	4
Figure 6.8	Firing angle of 90° at armored vehicle speed of 60 km/h 16	6
Figure 7.1	Hardware-in-the-Loop (HIL) Simulation using adaptive Neuro-PI	
	controller	8

Figure 7.2	Real-Implementation Test Scenario (RITS) using adaptive Neuro-PI	
	controller	79
Figure 7.3	IMC Studio Graphic User Interface (GUI)18	80
Figure 7.4	IMC Cronos Compact	82
Figure 7.5	Control architecture using Hardware-in-the-Loop testing	84
Figure 7.6	Control architecture using Real-Implementation Test Scenario	84
Figure 7.7	User Model Template for IMC HIL 18	85
Figure 7.8	Configuration of the HIL system using IMC HIL toolbox 18	86
Figure 7.9	Configuration of the RITS system using IMC HIL toolbox	87
Figure 7.10	Simulation test scenario using 40 km/h and 45°	89
Figure 7.11	Simulation test scenario using 60 km/h and 45° 19	91
Figure 7.12	Simulation test scenario using 40 km/h and 90°	92
Figure 7.13	Simulation test scenario using 60 km/h and 90°	93
Figure 7.14	HIL configuration using Pitman arm steering in Half Scale SIBMAS 19	94
Figure 7.15	HIL test scenario using 40 km/h and 90°	96
Figure 7.16	HIL test scenario using 60 km/h and 90°	97
Figure 7.17	Comparison between YDRC and conventional armored vehicle	98
Figure 7.18	RITS test scenario using 40 km/h and 90°	00
Figure 7.19	RITS test scenario using 60 km/h and 90°	01

LIST OF ABBREVIATION AND SYMBOLS

CG	Center of Gravity
YDRC	Yaw Disturbance Rejection Control
HIL	Hardware $-in - the - loop$
SIL	Software – in – the – loop
RITS	Real – Implementation Test Scenario
FOM	Firing - On - the - Move
AFWS	Active Front Wheel Steering
DC	Direct Current
DOF	Degree of freedom
NI	National Instrument
MIL	Model – in – the – Loop
AFV	Armored fighting vehicle
HMMWV	High Mobility Multipurpose Wheeled Vehicle
MR	Magneto Rheological
RPG	Rocket Propelled Grenades
PD	Proportional Derivative
PID	Proportional Integral Derivative
ESC	Electronic stability control
ESP	Electronic stability program
ABS	Antilock Braking System
AYC	Active Yaw Control
EBD	Electronic Brake-Force Distribution
TCS	Traction Control System
ADRC	Active Disturbance Rejection Control
ESO	Extended State Observer
VILS	Vehicle – in – the – loop Simulation
DAO	Data acquisition system
IMC	Integrated measurement and control
RMS	Root mean square
AIFS	Active Independent Front Steering
ECU	Electronic Control Unit
ADC	Analogue to Digital converter
RTWT	Real Time Windows Target
РТР	Peak-to-Peak
YDRC	Yaw Disturbance Rejection Control
GA	Genetic Algorithm
DOE	Design of experiment
ANOM	Analysis of mean
ANOVA	Analysis of variance
ITAE	Total of integral of time multiplied by absolute
	error
SNR	Signal-to-ratio
•	0

NN	Neural network
GUI	Graphic User Interface
GPS	Global Position Sensor
TCP/IP	Transmission Control Protocol/Internet Protocol
API	Application Program Interface
pvv	Process vector value
arphi	Firing angle
F _{sfl}	Spring force at front left corner
F _{dfl}	Damper force at front left corner
F _{sfr}	Spring force at front right corner
<i>F_{dfr}</i>	Damper force at front right corner
F _{srl}	Spring force at rear left corner
F _{drl}	Damper force at rear left corner
F _{srr}	Spring force at rear right corner
F _{drr}	Damper force at rear right corner
F _{tfl}	Tire forces acting at front left of sprung mass
<i>F</i> _{tfr}	Tire forces acting at front right of sprung mass
F _{trl}	Tire forces acting at rear left of sprung mass
F _{trr}	Tire forces acting at rear right of sprung mass
$F_{z,fl}$	Front left tire normal force
$F_{z,fr}$	Front right tire normal force
$F_{z,rl}$	Rear left tire normal force
F_{zrr}	Rear right tire normal force
$F_{\gamma fl}$	Longitudinal forces acting at front left tire
$F_{r,fr}$	Longitudinal forces acting at front right tire
$F_{x,y}$	Longitudinal forces acting at rear left tire
- x,/ t F	Longitudinal forces acting at rear right tire
$F_{\alpha} \in I$	Lateral forces acting at front left tire
- y,jt F	Lateral forces acting at front right tire
r y,jr E	Lateral forces acting at rear left tire
r _{y,rl}	Lateral foreces esting at rear right time
F _{y,rr}	Lateral forces acting at rear right tire
$F_{y_{vss}}$	Estimated lateral force due to vehicle side slips
	change
F _{recoil}	Recoil force due to gun firing effect
$F_{\mathcal{Y}}$	Lateral force at CG of armored vehicle
R _{angle}	Gun recoil force due to varies firing angle
$M_{z,fl}$	Moment acting at front left tire
M_{zfr}	Moment acting at front right tire
Mari	Moment acting at rear left tire
Mann	Moment acting at rear right tire
Z,II Mfino	estimated recoil moment acting at the CG of the
- ~j ure	vehicle system

M _{ideal}	Ideal moment required to reject recoil moment
M _{front}	Moment acting at the front vehicle body due to
	firing
M _{rear}	Moment acting at the rear vehicle body due to
	firing
M _{rotary}	Moment acting the CG of the vehicle due to firing
F _a	Aerodynamic force
F_r	Rolling resistance force
F _{y_{summation}}	Summation lateral force
F _{skyfront}	Skyhook force at front body
F _{skyrear}	Skyhook force at front body
m	Net input to the layer
m_s	Sprung mass
$m_{u,fl}$	Front left unsprung mass
$m_{u,fr}$	Front right unsprung mass
$m_{u,rl}$	Rear left unsprung mass
$m_{u,rr}$	Rear right unsprung mass
m_m	Mass of projectile
m_w	Mass of propellant charge
m_i	ANOM value
m_{avg}	Average value of SNR
C _{fire}	Distance of center of gun system to CG of the body
	1 • 1
	vehicle
eta_g	vehicle Factor of activity gunpowder gases
$egin{array}{c} eta_g \ C_d \end{array}$	vehicle Factor of activity gunpowder gases Aerodynamic drag
$egin{array}{c} eta_g \ C_d \ C_r \end{array}$	Vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire
$egin{array}{c} eta_g \ C_d \ C_r \ \ddot{z}_s \end{array}$	Vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG
$egin{aligned} η_g \ & C_d \ & C_r \ & \ddot{z}_s \ & \dot{z}_s \end{aligned}$	Vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG
β_g C_d C_r \ddot{z}_s \dot{z}_s z_s z_s	Vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG
β_{g} C_{d} C_{r} \ddot{z}_{s} \dot{z}_{s} z_{s} I_{p}	Vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia
β_{g} C_{d} C_{r} \ddot{z}_{s} \dot{z}_{s} z_{s} I_{p} I_{r}	Vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia
β_{g} C_{d} C_{r} \ddot{z}_{s} \dot{z}_{s} Z_{s} I_{p} I_{r} I_{z} I_{z}	vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia
β_{g} C_{d} C_{r} \ddot{z}_{s} \dot{z}_{s} I_{p} I_{r} I_{z} I_{w} \ddot{o}	vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass
β_{g} C_{d} C_{r} \ddot{z}_{s} \dot{z}_{s} z_{s} I_{p} I_{r} I_{z} I_{w} $\ddot{\theta}$ $\dot{\phi}$	 vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass
$ \begin{array}{c} \beta_g \\ C_d \\ C_r \\ \ddot{z}_s \\ \dot{z}_s \\ \dot{z}_s \\ I_p \\ I_r \\ I_z \\ I_w \\ \ddot{\theta} \\ \dot{\theta} \\ \dot{\sigma} \end{array} $	 vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Pall acceleration at C G of approxement
$ \begin{array}{c} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ z_{s} \\ I_{p} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \ddot{\phi} \\ \dot{\phi} \end{array} $	 vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Poll rate at C G of the sprung mass
$ \begin{array}{c} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ \dot{z}_{s} \\ I_{p} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{\phi} \end{array} $	vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Roll rate at C.G. of the sprung mass Wheel have of curves mass
$ \begin{array}{c} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ z_{s} \\ I_{p} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\phi} \\ \ddot{\phi} \\ W \\ k \end{array} $	 vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Roll rate at C.G. of the sprung mass Wheel base of sprung mass Height from ground to the CG
$ \begin{array}{c} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ \dot{z}_{s} \\ I_{p} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{\psi} \\ w \\ h \\ h \end{array} $	 vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Roll rate at C.G. of the sprung mass Wheel base of sprung mass Height from ground to the CG
$ \begin{array}{l} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ \dot{z}_{s} \\ I_{p} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\phi} \\ w \\ h \\ h_{rc} \\ h \end{array} $	vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Roll acceleration at C.G. of sprung mass Roll rate at C.G. of the sprung mass Wheel base of sprung mass Height from ground to the CG Height from ground to the center of roll angle Height from ground to the center of noll angle
$ \begin{array}{c} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ z_{s} \\ I_{p} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\$	vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Roll rate at C.G. of the sprung mass Wheel base of sprung mass Height from ground to the CG Height from ground to the center of roll angle Height from ground to the center of pitch angle
$ \begin{array}{l} \beta_{g} \\ C_{d} \\ C_{r} \\ \ddot{z}_{s} \\ \dot{z}_{s} \\ \dot{z}_{s} \\ I_{p} \\ I_{r} \\ I_{r} \\ I_{z} \\ I_{w} \\ \ddot{\theta} \\ \dot{\theta} \\ $	vehicle Factor of activity gunpowder gases Aerodynamic drag Rolling resistance of tire Acceleration of sprung mass at CG Sprung mass velocity at CG Sprung mass displacement at CG Pitch axis moment of inertia Roll axis moment of inertia Yaw axis moment of inertia Wheel moment of inertia Pitch acceleration at CG of sprung mass Pitch rate at CG of the sprung mass Roll acceleration at C.G. of sprung mass Roll acceleration at C.G. of sprung mass Wheel base of sprung mass Height from ground to the CG Height from ground to the center of roll angle Height from ground to the center of pitch angle Distance between front of vehicle and CG of

l_r	Distance between rear of vehicle and CG of the
	sprung mass
g	Gravitational force, 9.81 ms^{-2}
δ_f	Wheel steer angle
K _{s,fl}	Front left suspension spring stiffness
K _{s,fr}	Front right suspension spring stiffness
K _{s,rl}	Rear left suspension spring stiffness
K _{s,rr}	Rear right suspension spring stiffness
$C_{s,fl}$	Front left suspension damping
$C_{s,fr}$	Front right suspension damping
$C_{s,rl}$	Rear left suspension damping
$C_{s,rr}$	Rear right suspension damping
$Z_{u,fl}$	Front left unsprung masses displacement
$Z_{u.fr}$	Front right unsprung masses displacement
$Z_{ij} r_{l}$	Rear left unsprung masses displacement
$Z_{u,rr}$	Rear right unsprung masses displacement
$\dot{z}_{u,fl}$	Front left unsprung masses velocity
$\dot{z}_{u,fr}$	Front right unsprung masses velocity
$\dot{z}_{u,rl}$	Rear left unsprung masses velocity
$\dot{z}_{u,rr}$	Rear right unsprung masses velocity
$\ddot{z}_{u,fl}$	Front left unsprung masses acceleration
$\ddot{Z}_{u,fr}$	Front right unsprung masses acceleration
$\ddot{Z}_{u,rl}$	Rear right unsprung masses acceleration
$\ddot{z}_{u,rr}$	Rear right unsprung masses acceleration
$Z_{s,fl}$	Front left sprung mass displacement
$Z_{s,fr}$	Front right sprung mass displacement
$Z_{s,rl}$	Rear left sprung mass displacement
Z _{s,rr}	Front right sprung mass displacement
γ_c	Camber angle
X	Slip angle (for lateral motion) or skid (for
	longitudinal motion)
B	Stiffness factor
C	Shape factor
D	Peak factor
E	Curvature factor
S _h	Norizontal shift
S_v	Longitudinal acceleration
17	Longitudinal acceleration
a_{x}	Lateral acceleration
y d	Lateral displacement
ω _y ř	Yaw acceleration
12	Inertial longitudinal acceleration
v _x	

\dot{v}_{γ}	Inertial lateral acceleration
ŕ	Yaw rate
r	Yaw angle
<i>r</i> _{dyn}	Yaw rate after firing effect
r _{recoil}	Unwanted yaw rate response which is caused by
	the recoil moment
a_{y_dyn}	Lateral acceleration after firing effect.
β	Vehicle body side slip angle
α_{f}	Lateral slip angle at the front tires
α_r	Lateral slip angle at the rear tires
λ_f	Longitudinal slip at the front tires
λ_r	Longitudinal slip at the rear tires
v_{wxf}	Longitudinal velocity at front tires
V _{wrr}	Longitudinal velocity at rear tires
vo	Initial velocity of the projectile leaving the muzzle
$v_{y_{front}}$	Front vehicle lateral velocity
v _{vrear}	Rear vehicle lateral velocities
$\dot{\omega}_{fl}$	Angular acceleration at front left tire
$\dot{\omega}_{fr}$	Angular acceleration at front right tire
$\dot{\omega}_{rl}$	Angular acceleration at rear left tire
$\dot{\omega}_{rr}$	Angular acceleration at rear right tire
$C_{f,f}$	Viscous friction coefficients at front tires
$C_{f,r}$	Viscous friction coefficients at rear tires
C _{skv front}	Imaginary skyhook damper force at front body
$C_{skv\ rear}$	Imaginary skyhook damper force at rear body
$C_{skv rot}$	Imaginary skyhook damper force at CG body
C_{PID}	PID controller output
C_{PI}	PI controller output
k _p	Proportional gain
k _i	Integral gain
k _d	Derivative gain
Δk_p	Update for Proportional gain
Δk_i	Update for Integral gain
$e_i(t)$	error obtained due to the difference between
	desired and actual response of the system
K _{p_fire}	Proportional gain for FOM loop
K _{i_fire}	Integral gain for FOM loop
K _{p_yaw}	Proportional gain for AFWS loop
K _{i_yaw}	Integral gain for AFWS loop
R _w	Tire radius
Уа	Actual yaw rate response from neural network
\mathcal{Y}_m	Desired yaw rate response
\propto_w	Learning rate for weight