DEVELOPMENT OF NITROCELLULOSE AS A PROPELLANT IN ROUNDS 5.56MM BALL

FARIZHA BIN IBRAHIM

MASTER OF SCIENCE (DEFENCE TECHNOLOGY)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DEVELOPMENT OF NITROCELLULOSE AS A PROPELLANT IN ROUNDS 5.56 MM BALL

FARIZHA BIN IBRAHIM

Thesis submitted to Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfillment of the requirements for the Degree of Master of Science (Defence Technology)

ABSTRACT

Nitrocellulose also known as a gun cotton is produced through nitrating process. Currently, Malaysia is still buying gunpowder from other countries for our small arms industry. This scenario does not give a good strategic effect on our defence policy. Malaysia's survival when facing a prolonged crisis will not be at its optimal defensive capacity. Malaysia will face the possibility of running out of ammunition due to supply blockades from enemies and their possible allies. However, Malaysia has a lot of resources that can be used as a defence lifeline. In Malaysia, there are a lot of farm wastes, trees and other fibres that can be processed as nitrocellulose through the process of pulping, bleaching and nitrating. Through this process, a propellant grade nitrocellulose can be produced. This study is mainly done to investigate the powder or propellant charge effect in terms of kinetic energy and calorific value of the small arms bullet using Nitrocellulose, extracted from Rhizophora Apiculata, Kenaf Bast and Palm Oil Empty Fruit Bunches (EFB). After nitrocellulose was successfully produced, it was tested through firing test. The inhouse nitrocellulose produced was then compared with Rounds 5.56mm Ball (M193) Gunpowder in terms of muzzle velocity and kinetic energy produced. The findings revealed that raw nitrocellulose with nitrogen content 10.8% to 11.4% can be produced through this study. The nitrocellulose surprisingly produced the average reading of 39% higher for muzzle velocity and 63% higher for kinetic energy when tested at Ballistic Lab of STRIDE Batu Arang, Selangor. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) measurement were also carried out to further investigate the properties and purity of nitrocellulose. This shows a great opportunity for Malaysian defence industry to develop new sources for the most important part of weapon, which is the propellant itself.

ABSTRAK

Nitroselulosa yang juga dikenali sebagai "gun cotton" dihasilkan melalui proses nitrating. Pada masa ini, Malaysia masih mengimport serbuk letupan dari luar dalam industri peluru senjata kecil. Kebergantungan ini secara strategik tidak memberi kesan yang baik kepada dasar pertahanan kita. Yang membuat kemandirian pertahanan kita tidak berada pada tahap yang tertinggi jika sebarang krisis tercetus. Kita berhadapan dengan risiko kehabisan peluru disebabkan oleh sekatan bekalan dari musuh dan sekutunya. Walau bagaimanapun, kita mempunyai sumber-sumber yang banyak dan boleh digunakan sebagai talian hayat kita setelah melalui beberapa proses. Walau bagaimanapun. Malaysia mempunyai banyak sisa pertanian, pokok dan serat lain yang boleh diproses sebagai nitroselulosa melalui proses pulpa, pelunturan dan penitratan. Melalui proses ini nitroselulosa gred bahan peledak boleh dihasilkan. Kajian ini dilakukan terutamanya untuk menentukan kesan pengisian serbuk atau propelan dari segi tenaga kinetik dan nilai kalori peluru senjata kecil menggunakan Nitrocellulose, yang diekstrak dari Rhizophora Apiculata, Kenaf Bast dan Tandan Buah Kelapa Sawit (EFB). Selepas nitroselulosa berjaya dihasilkan, ia akan melalui ujian tembakan. Nitroselulosa akan dibandingkan dengan serbuk letupan Rounds 5.56mm Ball (M193) dari segi halaju dan tenaga kinetik yang dihasilkan. Penemuan mendapati nitroselulosa mentah dengan kandungan nitrogen 10.8% kepada 11.4% dapat dihasilkan melalui kajian ini. Amat mengejutkan apabila nitroselulosa mentah yang diproses menghasilkan purata 39% halaju lebih tinggi dan 63% tenaga kinetik lebih tinggi daripada serbuk letupan Rounds 5.56mm Ball . Pengukuran Analisis Thermografimetrik (TGA) dan Kalorimeter Pengimbas Kebedaan (DSC) juga dilakukan untuk menentukan sifatsifat dan keaslian unsur nitroselulosa. Ini menunjukkan peluang yang besar kepada industri pertahanan untuk membangunkan sumber baru bagi bahagian yang paling penting dalam senjata iaitu bahan dorongan dan peledak itu sendiri

ACKNOWLEDGEMENT

In the Name of Allah, the Beneficent, the Merciful

First, praise be to Allah, the Almighty, on whom ultimately we depend for sustenance and guidance. Second, my sincere appreciation goes to my supervisor Major Prof Dr Muhd Zu Azhan bin Yahya and Lt Kdr (B) Mohd Najib bin Abdul Ghani Yolhamid TLDM for the continuous support of my Master Degree research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my study.

Besides my advisor, I would like to thank Dr. Rushdan Ibrahim, and the rest of the team from Pulp and Paper Programme, Forest Products Division in Forest Reaseach Institute Malaysia (FRIM) for the full support and commitment that they have given me through my research. Last but not least, Mrs Raynee Ramliza bt Raybayi, Mrs Mastizah bt Saruji and their team from Ballistic Department, Weapon Technology Division at Science and Technology Research Institute for Defence (STRIDE) for excellent support and cooperation.

Most importantly, none of this would have been possible without the love and patience of my family. My immediate family, to whom this dissertation is dedicated to, has been a constant source of love, concern, support and strength all these years. I would like to express my heart-felt gratitude to my family. My extended family has aided and encouraged me throughout this endeavour.

APPROVAL

The Examination Committee has met on **18th March 2019** to conduct the final examination of **Farizha bin Ibrahim** on his degree thesis entitled **'Development Of Nitrocellulose As A Propellant In Rounds 5.56mm Ball'**

The committee recommends that the student be awarded the Master of Science (Defence Technology)

Members of the Examination Committee were as follows.

Prof Madya Dr. Norhana bt Abdul Halim

Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Chairman)

Lt Col Prof Madya Ariffin bin Ismail

Faculty of Defence and Management Studies Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof Madya Dr. Ing. Oskar Hasdinor Hassan

Faculty of Art and Design Universiti Teknologi MARA (External Examiner)

APPROVAL

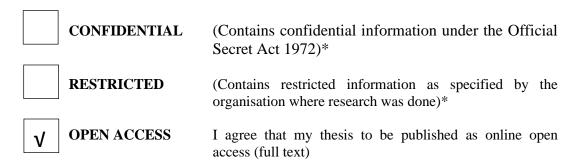
This thesis was submitted to the senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirement for the Master of Science. The members of the Supervisory Committee were as follows.

Major Professor Dr. Muhd Zu Azhan bin Yahya

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Lt. Cdr. RMN (R) Mohd Najib bin Abdul Ghani Yolhamid

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Co-Supervisor)


UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	: <u>Farizha bin Ibrahim</u>
Date of birth	: 7 th August 1985
Title	: Development of Nitrocellulose As A Propellant In
	Rounds 5.56 mm Ball
Academic session	: 2013 to 201 9

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Sinature	**Signature of Supervisor/ Dean of CGS/ Chief Librarian
N/404105	Major Professor Dr. Muhd
IC/Passport No	Zu Azhan bin Yahya
Date: July 2019	Date: July 2019

Note : * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the organisation stating the period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENT

	Page
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENT	iv
APPROVAL	V
APPROVAL	vi
DECLARATION OF THESIS	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xivi
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii

CHAPTER

1 IN	FRODUCTION	
1.1	Project Background	1
1.2	Problems Statement	2
1.3	Objectives	3
1.4	Research Scope	3
1.5	Significance of Research	4
1.6	Expected Outcome	4
2 LI	FERATURE REVIEW	
2 LF 2.1		5
2.1		5 5
2.1 2.2	Introduction	
2.1 2.2	Introduction Fire Arms	5
2.1 2.2 2.3	Introduction Fire Arms Firing Mechanism	5 6
2.12.22.32.4	Introduction Fire Arms Firing Mechanism 2.3.1 Flow of Firing Mechanism	5 6 6

2.6	5.56 mm Calibre Bullet	10
2.7	Cartridge	12
	2.7.1 Cartridge used in This Study	13
2.8	Propellant/Powder	14
2.9	Energy	16
	2.9.1 Kinetic Energy	17
	2.9.2 Energy Distribution	17
2.10	Calorimetry Test	18
2.11	Cellulose	19
2.12	2 Nitrocellulose	19
	2.12.1 Basic Types of Propellant Grades	22
	2.12.2 Quality parameters	23
	2.12.3 Deterioration in Storage	24
	2.12.4 Moistening component	25
	2.12.5 Moistening	25
	2.12.6 Stabiliser	25
2.13	3 Rhizopora	26
2.14	Kenaf Bast	28
2.15	5 Empty Fruit Bunches (Oil Palm)	29
2.16	5 Experimental Method	30
	2.16.1 How the Experiment Conducted	30
	2.16.2 Experiment Layout	31
	2.16.3 Calorimetry Standardisation	33
	2.16.4 Calorimetry Fuel Test	33
	2.16.5 Apparatus and Chemicals	34
	2.16.6 Expected Data	37

3 METHODOLOGY

3.1	Intro	luction	38
3.2	Proje	ct Overview	38
3.3	Produ	action of Nitrocellulose	40
	3.3.1	Materials and processing	42
	3.3.2	Pulping	42
	3.3.3	Pulp bleaching	46
	3.3.4	Processing of nitrocellulose from dissolving pulps	47
	3.3.5	Characterisation and analysis	49
3.4	Expe	rimental Method	49
	3.4.1	Experiment Set Up	50
	3.4.2	Firing Test	53
3.5	Analy	ytical Method	55
	3.5.1	Muzzle Velocity	55
	3.5.2	Kinetic Energy	55
	3.5.3	Calorimetry	56
		3.5.3.1 Preparation of the pellet	57
		3.5.3.2 Connection of the ignition wire	57
		3.5.3.3 Liquids in the bomb	57
		3.5.3.4 Close the bomb assembly	57
		3.5.3.5 Installation of the oxygen	58
		connection	
		3.5.3.6 Bomb filling	58
	3.5.4	Standardisation	58
	3.5.5	The Fuel Test	59
	3.5.6	Thermo Gravimetric Analysis (TGA) and	60

	Differential Scanning Calorimetric (DSC)	
3.6	Comparison of Results	61
RES	SULTS AND DISCUSSION	
4.1	Introduction	62
4.2	Production of Nitrocellulose	63
	4.2.1 Pulping	63
	4.2.1.1 Relation between Pulping Yield and Quantity of Fibre	64
	4.2.2 Pulp bleaching and dissolving pulp characteristics	65
	4.2.2.1 Hemicellulose	66
	4.2.2.2 α-cellulose	66
	4.2.2.3 Lignin	67
	4.2.2.4 Ash	68
	4.2.3 Nitrocellulose characteristics	69
	Thermo Gravimetric Analysis (TGA) and Ferential Scanning Calorimetric (DSC)	70
4.4	Firing Test	73
	4.4.1 Muzzle Velocity	74
	4.4.2 Kinetic Energy	75
4.5	Calorimetry Test	76
	4.5.1 Energy Equivalent Value (W)	78
	4.5.2 The Fuel Test (Gross Heat of Combustion)	79
4.6	Chapter Summary	80
	4.6.1 Production of Nitrocellulose	80
	4.6.2 Firing Test	80

5	CONCLUSION AND RECOMMENDATIONS FOR
	FUTURE RESEARCH

5.1	Conclusion	82
5.2	Recommendation for future research	83
REFERENCES		84
BIODATA OF STUDENT		91
LIST OF AWARDS		92
LIST OF PUBLICAT	TION	93
LIST OF CONFERE	NCE	94

LIST OF TABLES

Table	Title	Page
Table 2.1	Kinetic Energy to Bullet is the highest energy distributed from small firearm cartridge combustion	17
Table 2.2	Calorific values in International Steam Table	18
Table 2.3	Nitrogen content according to propellant grade	22
Table 3.1	Bleaching condition	47
Table 3.2	Characterisation and analysis	49
Table 3.3	Format for Data Table Obtained From Calorimetry Test	59
Table 4.1	Pulping results	63
Table 4.2	Characteristics of dissolving pulp produced	65
Table 4.3	Results of nitrocellulose produced	69
Table 4.4	Bullets velocity	74
Table 4.5	Mean, highest and lowest of bullets velocity	75
Table 4.6	Data Obtained From Calorimetry Test	77

LIST OF FIGURES

Figures	Title	Page
Figure 1.1	US Energy Consumption Production and Imports 1949- 2005	2
Figure 2.1	The firing pin hammered the primer in the cartridge	7
Figure 2.2	Ignition of primer and propellant combustion	7
Figure 2.3	Bullet being pushed to travel through the barrel	8
Figure 2.4	Types of bullets	9
Figure 2.5	Types of calibre	10
Figure 2.6	Types of 5.56 mm bullets	11
Figure 2.7	Spitzer shaped bullets	12
Figure 2.8	Cartridge components of Rounds 5.56mm Ball (M193)	13
Figure 2.9	Rounds 5.56mm Ball (M193) bullets dimension. All sizes in millimetres (mm)	14
Figure 2.10	Rounds 5.56mm Ball (M193) gunpowder	15
Figure 2.11	Nitrating reaction of cellulose by nitric acid	20
Figure 2.12	Burn rate curves for grains with zero perforations and various nitrogen levels	21
Figure 2.13	Chemical structure of a nitrocellulose with a nitrogen content of 12.2% and Degree of Substitution of 2.3%	21

Figure 2.14	Single Bse, Double Base and Triple Base Propellant	22
Figure 2.15	Höppler Viscometer	23
Figure 2.16	Rhizophora Apiculata (Hardwood)	27
Figure 2.17	Kenaf Bast (Softwood)	29
Figure 2.18	Empty Fruit Bunches (Oil Palm)	30
Figure 2.19	STRIDE's Experiment Layout	31
Figure 2.20	STRIDE Ballistic Lab (Firing Range)	32
Figure 2.21	Overall Layout	32
Figure 2.22	Schematic of the sample stand	34
Figure 2.23	Attachment of the nichrome ignition wire	35
Figure 2.24	Parr 6200 Calorimeter and 6510 Water Handling System	36
Figure 2.25	Combustion Bomb : (Rhizophora)	36
Figure 2.26	Fuse Wire	37
Figure 3.1	Project methodology	39
Figure 3.2	Overall nitrocellulose process flow for Rhizophora	40
Figure 3.3	Overall nitrocellulose process flow for EFB	41
Figure 3.4	Overall nitrocellulose process flow for kenaf bast	41
Figure 3.5	Rhizophora raw materials used	42
Figure 3.6	Rhizophora after pulping	43

Figure 3.7	Pulp disintegration after pulping	44
Figure 3.8	Shive removal	44
Figure 3.9	Pulp being centrifuged	45
Figure 3.10	Hobart mixer	45
Figure 3.11	Different stages of Kappa number determination	46
Figure 3.12	Pulp (a) before bleaching (b) during bleaching	46
Figure 3.13	Nitrocellulose synthesis procedure	48
Figure 3.14	Preparation of cartridge	51
Figure 3.15	Bullets Puller	52
Figure 3.16	Precision Balance	52
Figure 3.17	Reloading Press	53
Figure 3.18	Mauser Test Gun	54
Figure 3.19	Optical Light Screen	54
Figure 3.20	Schematic principle of TGA measurement and Schematic principle of DSC measurement	60
Figure 4.1	Pulping Yield	63
Figure 4.2	Hemicellulose content	66
Figure 4.3	α-cellulose content	67
Figure 4.4	Lignin content	68
Figure 4.5	Ash content	69

Figure 4.6	Nitrogen content	70
Figure 4.7	DSC-TGA for Rhizophora Nitrocellulose	71
Figure 4.8	DSC-TGA for EFB Nitrocellulose	72
Figure 4.9	DSC-TGA for Kenaf Nitrocellulose	73
Figure 4.10	Velocities of Bullets for different rounds	74
Figure 4.11	Mean of Muzzle Velocity	75
Figure 4.12	Kinetic Energy	76
Figure 4.13	Gross Heat	78

LIST OF ABBREVIATIONS

AQ	Anthraquinone
α	Alpha
СН3СООН	Acetic acid
DS	Degree of Subtitution
DSC	Differential Scanning Calorimetric
EFB	Empty Fruit Bunches
EIA	Energy Information Administration
FRIM	Forest Research Institute of Malaysia
FFB	Fresh Fruit Bunches
HNO ₃	Nitric acid
H2SO4	Sulphuric acid
K	Potassium
Ke	Kinetic Energy
KI	Potassium Iodine
Mg	Magnesium
МоА	Ministry of Agriculture
MoD	Ministry of Defence
МРОВ	Malaysian Palm Oil Board
m/s	Metre/Second
NaClO ₂	Sodium Chlorite

NaOH	Sodium Hydroxide
NATO	North Atlantic Treaty Organization
NC	NitroCellulose
NG	Nitrogliserin
(NH ₄) ₂ Fe(SO ₄) ₂	Ammonium Ferum (II) Sulfate
PO ³⁻ 4	Phosphate
UPNM	Universiti Pertahanan Nasional Malaysia
U.S.P	United States Pharmacopeia
STANAG	Standardization Agreement
S.T.R.I.D.E	Science and Technology Research Institute for Defence
TGA	Thermo Gravimetric Analysis
US	United States
2D	2 Dimension

CHAPTER 1

INTRODUCTION

1.1 Project Background

A main element for modern gunpowder used is sulphur alongside with charcoal as a fuel and saltpetre (potassium nitrate) as its oxidizer. Almost all elementals sulphur are produced as a by-product of removing sulphur-containing contaminants distilled from natural gas and petroleum. In the decline of natural resources such as petroleum, a new invention must be created to ensure the survival of projection power especially in small arms use. Lately, the number of elements that are used to produce black powder are showing sharp decline in production. The most obvious factor is oil usage worldwide, where the usage has increased but the oil supply can only meet 95% of it. (EIA, Annual Energy Review 2005) as depicted in Figure 1.1.

As compared with gunpowder (black powder), modern nitrocellulose explosive can be characterised by great increase in power, giving an enormously greater range, flatter trajectory and better penetration to projectile fired from rifles or artillery (Tadeusz Urbanski, 1965). The idea of having uniqueness not to produce smoke in firing is to cover up exact position of firing (Campbell, 1985).

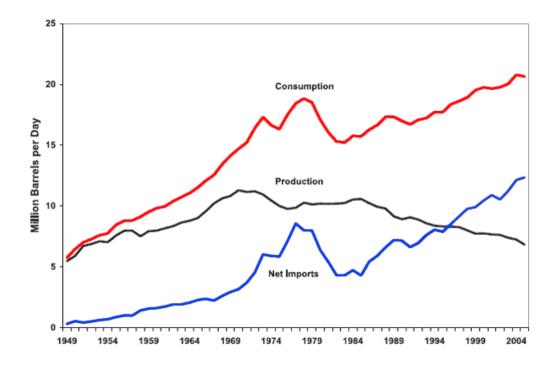


Figure 1.1 US Energy Consumption Production and Imports 1949-2005 (EIA, Annual Energy Review 2005)

This study is mainly done to investigate the powder or propellant charge effect in terms of kinetic energy and calorific value of the small arms bullet using Nitrocellulose sample extracted from *Rhizophora Apiculata*, Kenaf Bast and Palm Oil Empty Fruit Bunches (EFB). It involves the comparison of Nitrocellulose sample and Gunpowder from Rounds 5.56mm Ball (M193) in term of bullets velocity and kinetic energy. Firing test is conducted at STRIDE Batu Arang to analyse the actual propellant performance. Besides, calorimetry test, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) measurement were also carried out at FRIM Kepong to further investigate the properties of nitrocellulose.

1.2 Problems Statement

a. Black powder is the main propellant that has been used in small arms cartridge. However, main element of the black powder viz. sulphur is predicted to be more expensive in relation to the world oil and natural gas shortage crisis in the future. Therefore, a new element for propellants must be produced as an alternative material to back up the shortage of sulphur in future.

b. There is lack of literature particularly on method of processing pure nitrocellulose from our local raw materials. Therefore, it is anticipated that nitrocellulose-based materials extracted from *Rhizophora Apiculata*, Kenaf Bast and Palm Oil Empty Fruit Bunches (EFB) could have high probability to be used as propellant.

1.3 Objectives

This study is an attempt to produce the best composition chart of nitrocellulose and gunpowder to enhance firing distance and performance.

The specific objectives of this research are:

- a. To extract α-cellulose from *Rhizophora Apiculata*, Kenaf Bast and Empty Fruit Bunch (Palm Oil) and process α-cellulose into nitrocellulose.
- b. To determine the performance of nitrocellulose-based compared with gun powder as a propellant in Rounds 5.56mm Ball (M193).
- c. To appraise the calorific value and thermal properties of the produced nitrocellulose.

1.4 Research Scope

It is too vast for any single research work under a given time to cover all the variables that are related to the internal ballistic. This project therefore will only focus on certain properties of the system.

- 1. Literature review on propellant of Rounds 5.56mm Ball (M193), nitrocellulose and related information.
- 2. Raw materials involved in producing nitrocellulose are Rhizophora (Hardwood), Palm Oil Bunches Empty Fruit Bunches and Kenaf Bast

(Soft Wood).

3. Main values to be compared are velocity and kinetic energy of bullets propelled by produced Nitrocellulose with a gun powder. The type of gun powder used in this research is Rounds 5.56mm Ball (M193).

1.5 Significance of Research

The findings of the study will reveal the capability of produced nitrocellulose as a gun powder. In this research, a comparison of the same mass of nitrocellulose and gunpowder was done to find out which propellant is able to produce longer distance and greater impact. Besides that, the findings will enable the arms industry to use resources that are easier to find compared to resources that are required in producing black powder. It also can improve the sustainability of natural resources for ammo manufacturing as we are able to produce our own propellant using industrial and farming waste. This new application of smokeless gunpowder using nitrocellulose makes troops especially snipers more difficult to be detected by our enemy while at the same time improves our safety and security level.

1.6 Expected Outcome

From this study, the main objective is to find out the performance and capability of produced nitrocellulose from various samples such as Rhizophora (Hardwood), Palm Oil Bunches (Empty Fruit Bunches) and Kenaf Bast (Soft Wood) compared to gunpowder in terms of velocity, calorific value of bullets and kinetic energy produced. This shows a great opportunity for Malaysian defence industry to develop new sources for the most important part of weapon, which is the propellant itself.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Involvement in any modern war is not possible without ammunition. The usage of ammunition is vital in any offensive or defensive actions to be taken by any forces in the world. This issue must be taken into consideration especially when determining force capability as well as the opposition.

This chapter elaborates about the firearms including its cartridges and propellant. In term of producing nitrocellulose aspects, the process started from classification of raw material, preparation and production cellulose until nitrocellulose obtained as well as equipment and the processes involved are also explained in this chapter.

2.2 Firearms

Small firearms is defined as a firearm that is light, mobile and has high rapidity or easy to reload for the purpose to be used by individual user. There are many types of firearm but it consists of two main parts, which are the firing mechanisms and cartridge. Malaysian Armed Forces general issue weapons such as Colt M4A1