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ABSTRACT 
 

This thesis describes a thorough study on a newly developed thulium bismuth co-

doped fiber laser (TBDFL) in replace of a conventional thulium-doped fiber laser 

(TDFL). TDFL normally requires a high threshold pump power and thus cannot be 

pumped by a low power commercial laser diode. The fiber was fabricated using 

modified chemical vapour deposition (MCVD) in conjunction with the solution 

doping process. The experimental results revealed that the newly developed thulium 

bismuth co-doped fiber (TBDF) requires a comparatively shorter length for 1.9 

micron lasing as compared to the conventional thulium-doped fiber (TDF). Both of 

the 802 nm and 1552 nm pumps can be used to generate lasing for the TBDF. The 

TBDFL performance is superior to the conventional TDFL with a threshold pump 

power of 80.1 mW and a slope efficiency of 42.23% at a fiber length of 0.4 m. The 

superior lasing performance exhibited by the TBDF is due to the selection of 

suitable fiber parameters, namely the dopants compositions, their relative 

proportions and the host glass composition. The Q-switched TBDFL is also 

demonstrated using a simple and low cost multi-walled carbon nanotubes 

(MWCNT) saturable absorber.  It operates at the 1857.8 nm wavelength with a 

threshold pump power of 106 mW. It is observed that the repetition rate increases 

almost linearly from 12.84 kHz to 29.48 kHz with an increasing pump power of 

106.6 mW to 160 mW. Meanwhile, the pulse width reduces from 9.6 μs to 6.1 μs 

with the increase in the pump power increases. At the maximum pump power of 

160 mW, the maximum pulse energy is obtained at 61.7 nJ. 
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ABSTRAK 
 

Tesis ini merangkumi kajian terperinci penghasilan laser menggunakan gentian 

Thulium didopkan bersama Bismuth (TBDFL) sebagai gentian kepada laser yang 

menggunakan gentian Thulium konvensional (TDFL). Kebiasaannya, TDFL 

memerlukan kuasa pam ambang yang tinggi dan tidak boleh dipam oleh diod laser 

komersial yang berkuasa rendah. Gentian tersebut telah dihasilkan menggunakan 

pengubahsuaian pemendapan wap kimia (MCVD) bersama dengan proses 

pengedopan cecair. Keputusan eksperimen menunjukkan bahawa TBDF yang 

dihasilkan memerlukan ukuran gentian yang lebih pendek berbanding gentian 

Thulium konvensional (TDF) bagi penghasilan laser pada 1.9 mikron. Kedua-dua  

pam pada panjang gelombang 802 nm dan 1552 nm boleh digunakan untuk 

menghasilkan laser bagi TBDF. Prestasi TBDFL adalah jauh lebih baik berbanding 

TDFL konvensional dengan kuasa pam ambang dan cerun kecekapan sebanyak 80.1 

mW dan 42.23 %, masing-masing, bagi gentian sepanjang 0.4 m. Prestasi TBDF 

yang amat baik ini adalah disebabkan oleh pemilihan parameter gentian yang sesuai, 

iaitu bahan komposisi dopants, perkadaran relatif bahan dan komposisi kaca tuan 

rumah. Q-Switched TBDFL juga berjaya dihasilkan menggunakan penyerap 

saturable nanotube karbon perkepelbagaian sisi (MWCNT) yang ringkas dan berkos  

rendah. Ia beroperasi pada  panjang gelombang 1857.8 nm dengan kuasa pam 

ambang sebanyak 106 mW. Melalui pemerhatian, kenaikan kadar pengulangan 

adalah hampir linear dari 12.84 kHz kepada 29.48 kHz dengan peningkatan kuasa 

pam dari 106.6 mW kepada 160 mW. Lebar denyut mengalami pengurangan 

daripada 9.6 μs kepada 6.1 μs seiring dengan kenaikan kuasa pam. Tenaga nadi 

maksimum yang diperolehi pada kuasa pam maksimum (160 mW) ialah 61.7 nJ. 
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CHAPTER 1 

INTRODUCTION 
 

1.1  Background 

 

Light Amplification by the Stimulated Emission of Radiation (LASER) has 

been used in many popular culture science fictions and other futuristic weapon in 

the movies. In the reality, lasers have produced powerful sources of photons that 

have been used in many industrial applications. The laser is one of the most 

significant technologies of the late twentieth century. It was first invented in 1958 

and since then many new technologies based on lasers were established for various 

applications (Schawlow & Townes, 1958). The idea of laser originated from Albert 

Einstein’s theory on ‘Stimulated Emission’ in which, when it encounters a photon, 

matter may lose energy by emitting the exact same photon.  As a result, the 

amplification of light is achievable under condition of population inversion. In 

addition to the gain media, another essential  device is the optical cavity (resonator) 

in which the light can circulate and get amplified. As long as the gain is larger than 

the loss, the power of the light in the laser cavity quickly rises. Significant power 

output is thus only achievable above the so-called laser threshold, the power of 

which the small-signal gain is just sufficient to compensate the cavity loss.  

 

 The first laser action was demonstrated by Theodore H. Maiman in 1960 at 

Hughes Research Laboratories in Malibu, California using 2 cm long ruby 

(chromium in corundum) cylinder as the active gain medium (Maiman, 1960).        

A flash lamp was used to pump the ruby rod in generating laser at 694 nm. 

However, Gordon Gould was the first person to use the word ‘laser’. Interestingly, 
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in 1962 the first diode laser was developed by Robert N. Hall at the General Electric 

(Hall, Fenner, Kingsley, Soltys, & Carlson, 1962) (Feng et al., 2006). It was a 

gallium-arsenide p-n junction emitting at the wavelength of 842 nm. The 

development of a powerful and efficient diode laser has been essential for fiber laser 

development due to their employment as pump sources. Meanwhile, the first visible 

wavelength laser diode was demonstrated by Nick Holonyak Jr later in 1962 (Held, 

2008). Since then laser physics has always been driven by a genuinely scientific 

quest to extend existing limits such as higher power, shorter pulse, narrower 

linewidth and new wavelength.  Over the last fifty years, developments in the laser 

field have occurred at a rapid pace. Many new lasers have been discovered, each 

with its own special properties and applications, showing dramatic improvement in 

their cost, performance or practicality. 

 

 Recently a great deal of researches on 2 µm laser have been conducted in 

both solid-state laser and fiber laser field because of its wide applications in 

medicine, remote sensing, lidar, range finder, military applications and molecular 

spectroscopy (Wu, Yao, Zong, & Jiang, 2007) (Harun et al., 2012) (Geng, Wu, 

Jiang, & Yu, 2007).  The strong absorption by water and the weak absorption by 

human tissues at 2 µm also nominate it as an ideal wavelength for biological and 

medical applications including laser angioplasty in the coronary arteries, ophthalmic 

procedures, arthroscopy, laparoscopic cholecystectomy and refractive surgeries.  In 

addition, other features of 2 µm lasers such as the lower atmospheric absorption, 

smaller scattering and ‘eye-safe’ property make the wavelength desirable for 

material processing, ranging, low altitude wind shear and remote sensing, which 

includes Doppler lidar wind sensing and water vapor profiling by differential 
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absorption lidar (DIAL).  Such wavelength is also an ideal pump source for mid-

infrared optical material.    

 

 The 2 µm laser can be realized using a Thulium doped fiber (TDF) as the 

gain medium. The TDF laser (TDFL) was firstly discovered by Hanna et al. in 1988 

with a 797 nm dye laser as the pump source. Meanwhile, the first 2 µm Q-switched 

TDFL was carried out in 1993 by an acousto-optic modulator (Myslinski et al., 

1993). The pulsed laser has many potential applications such as in 2 - 4 µm 

pumping (Creeden et al., 2008) (Godard, 2007) and medical applications 

(Esterowitz & Pinto, 1993). The Q-switched TDFL can be realized by either active 

or passive techniques.  The active Q-switching is based on an active loss modulation 

with a Q-switcher and thus its pulse repetition rate can be externally controlled. 

Normally, active Q-switches are mechanical Q-switches, electro-optical Q-switches 

and acousto-optic Q-switches. Besides that, as an alternative to the active Q-

switched laser, the passively Q-switched laser gives low cost, reliable operation 

without high voltages. In this thesis, Q-switched 2 micron fiber lasers are proposed 

using a passive saturable absorber (SA) using TDF or Thulium Bismuth co-doped 

fiber (TBDF) as the gain medium. 

 

1.2  Motivation 

 

The growing interest in various laser applications with emissions within the 

two micron spectral region motivated this research work. The 2 micron fiber lasers 

can be achieved using a TDF as the gain medium. The TDFL operates within the 

1800 nm to 2100 nm wavelength region, which falls into the eye-safer category of 
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lasers. This gives it potential advantages over 1 µm lasers especially for industrial 

and military applications. For instance, these lasers can be deployed in military laser 

weapon systems to replace 1 micron laser systems, which can cause serious eye 

hazard since their beams are invisible and the power can be imaged onto the retina. 

To date, pulsed laser systems may be used either for direct applications such 

LIDAR and range finding, or for conversion into the mid-IR for countermeasures, 

remote sensing, and spectroscopy applications. 

 

 In order to optimise the lifetime of 
3
F4 and 

3
H5 levels in TDF, co-doping 

with other elements such as Erbium, Ytterbium, Terbium and Bismuth has been 

attempted (Librantz, Gomes, Pairier, Ribeiro, & Messaddeq, 2008) (Braud et al., 

2000). For instance, co-doping with Ytterbium is reported by Braud in which energy 

transfer from Ytterbium to Thulium reduces the effective lifetime of 
3
F4 level 

(Braud et al., 2000). In this work, lasing at 1900 nm region is experimentally 

demonstrated using a TBDF as the gain medium for the first time. In addition to the 

cross relaxation process between thulium ions, this fiber provides effective energy 

transfer channels from bismuth to thulium, resulting in higher amplification 

efficiency in this region. The performance of the proposed TBDFL is then 

compared with a TDFL, which was obtained by using a commercial TDF.   

 

1.3  Problem Statements                                             

 

Compared to their 1 µm and 1.55 µm counterparts, 2 µm laser sources are 

more favourable pump sources for mid-IR generation for several reasons. First, 

quantum defects are lower at 2 µm, yielding higher quantum efficiency for 
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generating mid-IR wavelengths. Second, many nonlinear crystals used for mid-IR 

generation are not transparent or have a much higher absorption at pump 

wavelengths shorter than 2 pm. Third, dispersion is too high at shorter wavelengths 

in some nonlinear crystals to achieve phase-matching for nonlinear parametric 

processes. And finally, 2 µm fibers can have larger core sizes and higher nonlinear 

thresholds, enabling higher-power 2 µm lasers and consequently, higher-power mid-

IR output.  

 

To date, many different glass host materials have been used to fabricate TDF 

for 2 µm laser operation, including silica and non-silica glass fibers such as 

germanate- and tellurite-based types. It is well known that the doping concentration 

of rare-earth ions in silica fiber is limited due to the intrinsic glass network 

structure. So that, various approaches have been developed to increase the doping 

concentration including co-doping with B2O3. The highest doping level in silica 

glass is limited to approximately 2 wt%. Due to the limited Thulium doping 

concentration, quantum efficiency of Thulium doped silica fiber lasers is also 

limited. The doped fiber has improved mechanical strength and better compatibility 

with silica fiber than other multicomponent glass fibers for more robust fusion 

splicing. Here, a new fiber so-called Thulium Bismuth co-doped fiber (TBDF) is 

developed to overcome the limitation of the conventional TDF. The conventional 

TDFL normally requires a high threshold pump power and thus cannot be pumped 

by a low power commercial laser diode.  

 

In passive Q-switching using saturable absorption, CNTs are known to 

provide distinct advantages in their ultra-fast recovery time and wide absorption 
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bandwidth compared to their semiconductor-based counterparts. Recently, many 

works have been reported on the use of CNT-based saturable absorbers for the 

implementation of Q-switched lasers. Most of these works focus on 1550 nm and 

1060 nm applications using an erbium or ytterbium doped fiber gain media, 

respectively (Harun et al., 2012). There is still a lack of research work in 2 micron 

region. 

 

Recently, a new member of carbon nanotubes family called multi-walled 

carbon nanotubes (MWCNTs) have also attracted much attention for nonlinear 

optics applications due to their lower production cost, which is 50% - 80% cheaper 

than the SWCNT material introduced in this thesis. Compared with SWCNTs, the 

MWCNTs have higher mechanical strength, photon absorption per nanotube and 

better thermal stability due to its higher mass density. In this thesis, the use of 

MWCNTs for SA in fiber laser is demonstrated for the first time. 

 

1.4  Objectives 

 

The principal objective of this thesis and its chapter are to develop efficient 

2 micron fiber lasers operating in both continuous wave (CW) and Q-switched pulse 

schemes. A Thulium-Bismuth co-doped fiber laser (TBDFL) is proposed and 

developed to generate an efficient laser within the 1.8 ~ 2 µm region. In addition to 

the cross relaxation process between thulium ions, TBDF provides effective energy 

transfer channels from bismuth to thulium, resulting in higher amplification 

efficiency at this region. To achieve the main objective, few secondary objectives 

have been proposed to guide the research direction, i.e.: 
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• To analyze a 2 µm laser emission using a commercial TDF as the gain 

medium.  

• To investigate and compare the performance of TBDFL with the TDFL 

in terms of slope efficiency and threshold pump power.  

• To generate a room temperature all-fiber dual-wavelength Thulium 

Bismuth co-doped fiber laser (TBDFL) operating in the 1900 nm region 

using a single fiber Bragg Grating (FBG) in a ring configuration.  

• To develop Q-switched 2 micron fiber lasers using both commercial 

TDF and TBDF as the gain medium in conjunction with a passive 

saturable absorber. 

• To evaluate both graphene and multi-walled carbon nanotubes saturable 

absorbers in producing energetic Q-switched pulses in the 2 micron 

wavelength region. 

 

1.5  Research Methodology 

 

These researches are carried out based on a standard research methodology. 

Before commencing any experiments, a literature review and understanding of 

operating principles of the TDFL and TBDFL are undertaken. After the review is 

completed, the development of Thulium Bismuth doped fiber (TBDF) was done 

with the assistance from our collaborator from Central Glass and Ceramic Research 

Institute (CGCRI), India. The lasing experiments were then carried out to compare 

the performance characteristic between the newly developed TBDF and the 

commercial TDF. The main characteristics such as ASE, slope efficiency and 

threshold are investigated.  
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 Pulsed operation in Q-switching is achieved by using a homemade saturable 

absorption. A saturable is an optical component in which absorption decline when 

the incoming light intensity is raised. Two types of saturable absorbers (SAs); 

graphene and MWCNT were developed and used in this study. In fabricating a 

graphene based SA, the first step is to produce graphene flakes using 

electrochemical exfoliation process. The graphene flakes are processed and mixed 

with various polymer solutions to fabricate a graphene film. In the case of 

MWCNT, the carbon nanotubes powder is added with functionalizer solution so that 

it can be dissolved in water. The carbon nanotubes composite is also mixed with the 

polymer solution to fabricate the film. The SA is fabricated by cutting a small part 

of the prepared film  by approximately 2×2 mm
2
 and sandwiching it between two 

FC/PC fiber connectors. Apart from that, the performance evolution of the SA such 

as Raman spectroscopy is investigated. The Q-switched fiber lasers were then 

constructed by using either a commercial TDF or the TBDF as the gain medium. 

The lasing and Q-switching performances are investigated and then compared. Fig. 

1.1 shows the flow chart of our research methodology.  
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Fig 1.1: Research methodologies for the thesis 
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1.6  Thesis Overview 

  

In this thesis, we focus on developing a 2 micron fiber laser operating in 

both CW and Q-switching modes using two different gain media; commercial TDF 

and the newly developed TBDF. This thesis is arranged into five chapters, where 

the background on fiber laser, introduction on the TDFL, motivation and objective 

of the proposed work are described in this chapter.  

 

Chapter 2 is devoted to some fundamental and literature review of Thulium 

fiber laser, the discussion on pulse generation based on Q-switching as well as the 

potential of graphene and carbon nanotubes as a saturable absorber. 

 

 Chapter 3 presents an experimental investigation of the Thulium Bismuth 

co-doped fiber laser (TBDFL) characteristics and all fiber dual-wavelength TBDFL 

generation at room temperature. The performance comparison between TBDFL and 

TDFL is also demonstrated and discussed in this chapter.  

 

 Chapter 4 focuses on demonstrating stable passive Q-switched 2 micron 

fiber lasers using both the commercial TDF and TBDF as the gain medium. In this 

work, both multi-walled carbon nanotubes (MWCNT) and multi-layer graphene 

film based saturable absorber were used to realize a stable Q-switched fiber laser 

operating at 1900 nm region. The performance of these lasers is also compared for 

two different pumping schemes; 802 nm and 1552 nm. 

 


