DEVELOPMENT OF THULIUM FIBER LASERS OPERATING AT 1.9

MICRON REGION

DESS ISKANDAR BIN MD ZEN

Thesis Submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science (Electrical and Electronic Engineering)

Jul 2014

In memory of my father Md Zen bin Abu and to my mother Bayak binti Usop

ABSTRACT

This thesis describes a thorough study on a newly developed thulium bismuth codoped fiber laser (TBDFL) in replace of a conventional thulium-doped fiber laser (TDFL). TDFL normally requires a high threshold pump power and thus cannot be pumped by a low power commercial laser diode. The fiber was fabricated using modified chemical vapour deposition (MCVD) in conjunction with the solution doping process. The experimental results revealed that the newly developed thulium bismuth co-doped fiber (TBDF) requires a comparatively shorter length for 1.9 micron lasing as compared to the conventional thulium-doped fiber (TDF). Both of the 802 nm and 1552 nm pumps can be used to generate lasing for the TBDF. The TBDFL performance is superior to the conventional TDFL with a threshold pump power of 80.1 mW and a slope efficiency of 42.23% at a fiber length of 0.4 m. The superior lasing performance exhibited by the TBDF is due to the selection of suitable fiber parameters, namely the dopants compositions, their relative proportions and the host glass composition. The Q-switched TBDFL is also demonstrated using a simple and low cost multi-walled carbon nanotubes (MWCNT) saturable absorber. It operates at the 1857.8 nm wavelength with a threshold pump power of 106 mW. It is observed that the repetition rate increases almost linearly from 12.84 kHz to 29.48 kHz with an increasing pump power of 106.6 mW to 160 mW. Meanwhile, the pulse width reduces from 9.6 µs to 6.1 µs with the increase in the pump power increases. At the maximum pump power of 160 mW, the maximum pulse energy is obtained at 61.7 nJ.

ABSTRAK

Tesis ini merangkumi kajian terperinci penghasilan laser menggunakan gentian Thulium didopkan bersama Bismuth (TBDFL) sebagai gentian kepada laser yang menggunakan gentian Thulium konvensional (TDFL). Kebiasaannya, TDFL memerlukan kuasa pam ambang yang tinggi dan tidak boleh dipam oleh diod laser komersial yang berkuasa rendah. Gentian tersebut telah dihasilkan menggunakan pengubahsuaian pemendapan wap kimia (MCVD) bersama dengan proses pengedopan cecair. Keputusan eksperimen menunjukkan bahawa TBDF yang dihasilkan memerlukan ukuran gentian yang lebih pendek berbanding gentian Thulium konvensional (TDF) bagi penghasilan laser pada 1.9 mikron. Kedua-dua pam pada panjang gelombang 802 nm dan 1552 nm boleh digunakan untuk menghasilkan laser bagi TBDF. Prestasi TBDFL adalah jauh lebih baik berbanding TDFL konvensional dengan kuasa pam ambang dan cerun kecekapan sebanyak 80.1 mW dan 42.23 %, masing-masing, bagi gentian sepanjang 0.4 m. Prestasi TBDF yang amat baik ini adalah disebabkan oleh pemilihan parameter gentian yang sesuai, iaitu bahan komposisi dopants, perkadaran relatif bahan dan komposisi kaca tuan rumah. Q-Switched TBDFL juga berjaya dihasilkan menggunakan penyerap saturable nanotube karbon perkepelbagaian sisi (MWCNT) yang ringkas dan berkos rendah. Ia beroperasi pada panjang gelombang 1857.8 nm dengan kuasa pam ambang sebanyak 106 mW. Melalui pemerhatian, kenaikan kadar pengulangan adalah hampir linear dari 12.84 kHz kepada 29.48 kHz dengan peningkatan kuasa pam dari 106.6 mW kepada 160 mW. Lebar denyut mengalami pengurangan daripada 9.6 µs kepada 6.1 µs seiring dengan kenaikan kuasa pam. Tenaga nadi maksimum yang diperolehi pada kuasa pam maksimum (160 mW) ialah 61.7 nJ.

ACKNOWLEDGEMENTS

Foremost, I would like to convey my most sincere appreciation to my supervisors, Prof. Dr. Kaharudin bin Dimyati and Prof. Dr. Sulaiman Wadi bin Harun for their priceless guidance, enthusiasm, encouragement, knowledge and wisdom. They had guided and helped me in all the time of my research and writing of this thesis. Through this process, I have learnt not only about the research but also the values which are fundamental in achieving success in life. I could not have imagined having a better advisor and mentor for my master study.

I would never have been able to finish my research without the guidance of my committee members including Norazlina Saidin, Husna Abd Rahman, Siti Sarah Damanhuri, Mej Jaffar Mohamed Taib, Siti Munirah, Mej Johari Jaffar, Fauzan Ahmad, Hazlihan Haris, Amirah Abdul Latif, Mohd Hafizin Jemangin, Tan Sin Jin, Zulzilawati Jusoh, Razif and Malathi. I would like to express my deepest gratitude to my parents, my brothers, my sisters and my friends including Basirah, Mej Faizal, Mej Zuridah, Kapt Sharinawati, Kapt Amir, Kapt Nadhirah, Kapt Ain, Kapt Fazli, Kapt Fairuz, Kapt Rafiuddin, Kapt Azhar, Kapt Aiman and Kapt Firdaus. They were always supporting me and encouraging me with their best wishes. My sincere thanks also to my KCK, PU Subang, Lt. Kol Ir. Azhar Idris for his motivation. I would like to express the deepest appreciation to my Prof. Dr. Harith Ahmad, who has shown the attitude and the substance of a genius: he continually and persuasively conveyed a spirit of adventure in regard to research. Last but not least, I would like to thanks to my Royal Malaysian Air Forces (RMAF) especially Engineering Branch for giving me this great opportunity.

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia

and has been accepted as fulfilment of the requirements for the degree of Master of

Science (Electrical and Electronic Engineering). The members of the Supervisory

Committee were as follows.

Dr. Kaharudin bin Dimyati, PHD Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Supervisor)

Dr. Sulaiman Wadi bin Harun, PHD Professor Faculty of Engineering Universiti Malaya (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's Full Name	:	Dess Iskandar bin Md Zen
Date of Birth	:	26 June 1980
Title	:	Development of Thulium Fiber Lasers operating at
		1.9 micron region
Academic Session	:	Feb 2012 - Feb 2014

I declare that this thesis is classified as:

CONFIDENTAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purposes of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE	SIGNATURE OF SUPERVISOR
T 374064	PROF. DR. KAHARUDIN BIN
	DIMYATI
IC/PASSPORT NO.	NAME OF SUPERVISOR

Date:

Date:

TABLE OF CONTENTS

		Pages
ABSTRACT		iii
ABSTRAK		iv
ACKNOWLED	JEMENTS	v
APPROVAL		vi
DECLARATION	N OF THESIS	vii
TABLE OF CON	VTENTS	viii
LIST OF TABLE	ES	Х
LIST OF FIGUR	LES	xi
LIST OF ABBRI	EVIATIONS	xiv
CHAPTER		
1	INTRODUCTION	1
1	1 1 Background	1
	1.7 Motivation	3
	1.3 Problem Statements	4
	1 4 Objectives	6
	1.5 Research Methodology	7
	1.6 Thesis Overview	10
2	LITERATURE REVIEW	12
	2.1 Introduction	12
	2.2 Fiber Lasers Fundamental	12
	2.3 Basic Laser Parameters	17
	2.4 Thulium Doped Fiber Laser	19
	2.5 General Characteristic of Thulium Doped Fiber	23
	2.6 Q-switched Fiber Laser	26
	2.7 Introduction to Carbon Nanotubes and Graphene	29
	2.8 Summary	34
2	LASING EXPERIMENTS ON THULIUM	
3	BISMUTH CO-DOPED FIBER LASER	35
	3.1 Introduction	35
	3.2 Working Principle	36
	3.3 Fabrication and Characterization of Thulium	
	Bismuth Co- doped Fiber (TBDF)	40
	3.4 Amplified Spontaneous Emission (ASE)	
	Characteristic of the TBDF	44
	3.5 TBDF Laser Operating at the 1900 nm Region	50
	3.6 TBDFL with 1552 nm Pumping	59
	3.7 Performance of the TBDFL with Dual Pumping	67
	3.8 Performance of the TBDFL with Ring	
	Configuration	70
	3.9 Dual-wavelength TBDFL	75
	3.10 Summary	79

4	PULSED 2 MICRON FIBER LASERS	81
	4.1 Introduction	81
	4.2 Graphene Based Q-switched Thulium-doped Fiber	
	Lasers	82
	4.2.1 Fabrication and Characterization of	
	Graphene Film	84
	4.2.2 Graphene Based Q-switched TDFL	
	Incorporating an 802 nm Pump Source	88
	4.2.3 Graphene Based Q-switched TDFL	
	Incorporating a 1552 nm Pump Source	96
	4.3 Carbon-nanotubes Based Q-switched Thulium-	
	doped Fiber Lasers	102
	4.3.1 Preparation and Raman Characterisation of	
	CNT-PVA Film	103
	4.3.2 Experimental Arrangement	105
	4.3.3 Q-switching Performances	106
	4.4 Q-switched Thulium Bismuth Co-doped Fiber	
	Laser	111
	4.5 Summary	119
5	CONCLUSION AND FUTURE WORKS	120
	5.1 Conclusion	120
	5.2 Future Works	126
REFERENCES		128
BIODATA OF T	HE STUDENT	136
LIST OF PURLI	CATIONS	137
		157

LIST OF TABLES

TABLE NO.		PAGES
Table 3.1	The doping concentration and physical characteristic of the fabricated TBF samples	43
Table 3.2	Comparison of slope efficiencies for TBDFLs configured with a single 1552 nm pumping and the proposed dual pumping (a combination of 1552 nm and	
	802 nm)	70
Table 4.1	Comparison of Q-switched data for TDFL and TBDFL	
	using MWCNT-PVA	118
Table 5.1	Summary of the Q-switching characteristic	126

LIST OF FIGURES

FIGURE N	NO.	PAGES
Fig. 1.1	Research methodologies for the thesis	9
Fig. 2.1	Fig. 2.1 The illustration of optical fiber with step index	
•	profile to show how light travels within the core of the	
	fiber	13
Fig. 2.2	The illustration diagram of Fabry-Perot fiber laser	15
Fig. 2.3	Wavelengths emitted by CW rare earth doped silica fiber	
•	laser	16
Fig. 2.4	The operation of CW and pulsed lasers	17
Fig. 2.5	Energy diagram explaining the working principle of	
	Thulium laser	21
Fig. 2.6	Absorption cross-section spectrum of TDF	24
Fig. 2.7	The possible laser transition of Tm3+ ions in silica based	
•	fiber	24
Fig. 2.8	Fig. 2.8 $3F4 \rightarrow 3H6$ emission band from TDF at 1880 nm	
	region using the 802 nm pumping scheme. Inset shows the	
	$3H4 \rightarrow 3F4$ at 1470 nm region	26
Fig. 2.9	Diagram the structure of graphene	30
Fig. 2.10	Diagram the basic structure of both (a) SWCNT and (b)	
	MWCNT	31
Fig. 2.11	Sandwiched device for integrating SWCNT-SA/graphene-	
	SA into fiber devices	33
Fig. 3.1	Absorption characteristic of a commercial TDF	36
Fig. 3.2	Energy level diagrams for various transitions in TBDF with	
	802 nm pumping involving (a) Tm3+ (b) cross relaxation	
	between Tm3+ (c) energy transfer from active bismuth to	
	Tm3+	38
Fig. 3.3	Energy transfer from Tm3+ to active bismuth with 1552	
	nm pumping	39
Fig. 3.4	Cross sectional view of TB2 sample	42
Fig. 3.5	Fig. 3.5 EPMA plot of dopants showing a distribution of	
	Bi2O3, Tm2O3, Al2O3 and GeO2 for cross section of the	
	TB2 sample	42
Fig. 3.6	A plot of RI profile for the cross section of the Tm-Bi co-	
	doped preform, which is then used to fabricate TBDF	43
Fig 3.7	Absorption spectrum of TB2 measured using a cut-back	
	method	44
Fig. 3.8	ASE spectra for different TBDF samples at the fixed 802	
	nm pump power of 25 mW	47
Fig. 3.9	Fig. 3.9 ASE spectra for different TBDF samples at the	
	fixed 1552 nm pump power of 100 mW. Inset shows the	
-	ASE at 1470 nm region	48
Fig. 3.10	Comparison of the ASE emission between TBDF sample	
	(TB2) and the commercial TDF when it is pumped by a 25	
	mW, 802 nm pump	49

Fig. 3.11	ASE spectrum with and without 500 mW of 1552 nm	
	pumping when the primary pump of 802 nm is fixed at 100	
	mW	50
Fig. 3.12	Configuration of the TBDFL based on linear cavity	51
Fig. 3.13	Transmission spectrum of both FBGs used in the laser	
	cavity	52
Fig. 3.14	Attenuated output spectrum of the TBDFL (a) at 1901 nm	
	region (b) within 700 to 1700 nm at the same attenuation	54
Fig. 3.15	Output power of the proposed TBDFL against the pump	
-	power at different TB1 lengths	55
Fig. 3.16	Output power of the proposed TBDFL against the pump	
F ' 0.4 F	power at different TB2 lengths	56
Fig. 3.17	ASE spectra of the TDF under 200 mW of 802 nm	
F ' 0 10	pumping at various fiber lengths	57
F1g. 3.18	ASE spectra of the TDF under 200 mW of 802 nm	
	pumping at various fiber lengths. Inset shows the	
	attenuated output spectrum of the laser at the maximum	50
F' 2 10	pump power	59
F1g. 3.19	ASE spectra from the TB2 sample incorporating a 1552 nm	(1
Eia 2 20	pumping The attenueted autout an extran	01
Fig. 5.20	The altenuated output spectrum of the TBDFL at 1552 nm	(2)
$E_{12} = 2.01$	Output notice of the menosed TDDEL against the 1552 nm	03
FIg. 3.21	output power of the proposed TBDFL against the 1552 min	61
Ei~ 2.00	ASE spectra of the TDE at the nume neuror of 200 mW	04
Fig. 3.22	ASE spectra of the TDF at the pump power of 200 mw	03
Fig. 5.25	nower at different fiber lengths	66
Fig 3.24	Configuration of the proposed TBDEL with dual numping	00
11g. <i>3.2</i> 4	scheme	68
Fig 3 25	Fig. 3.25 Output power of the TB2 fiber laser as a function	00
1 15. 5.25	of the launched nump power at different fiber lengths using	
	the dual numping method	69
Fig. 3.26	The configuration of the ring TBDFL	72
Fig. 3.27	Output spectrum of the laser (a) at spanning range from	
1-18:01-1	1400 nm to 2000 nm (b) enlarged figure at 1900 nm. Inset	
	of Fig. 3.27(a) shows the output spectrum at 802 nm region	73
Fig. 3.28	Output power against pump power for both TBDFL and	
U	TDFL configured with a ring setup	74
Fig. 3.29	Experimental setup for the proposed dual wavelength	
U	TBDFL	76
Fig. 3.30	Transmission and reflection spectra of the FBG used in the	
U	experiment	77
Fig. 3.31	Output spectra for the TBDFL at both dual-wavelength and	
	single-wavelength operations	78
Fig. 3.32	The stability graph with 10 minute's period for each frame	79
Fig. 4.1	(a) Experimental set-up for the electrochemical exfoliation	
	of grapheme (b) after several minutes (c) after two hours of	
	exfoliation process	86
Fig. 4.2	Raman spectrum from the graphene film	87
Fig. 4.3	The illustration of configuration of the Q-switched TDFL	89

Fig. 4.4	Image of the graphene thin film based SA	89
Fig. 4.5	Fig. 4.5 Output spectrum from the Q-switched TDFL at	
	pump power of 186mW	90
Fig. 4.6	Output spectrum of the CW laser, which is obtained	
-	without the SA at pump power of 162 mW	91
Fig. 4.7	The pulse train for the proposed TDFL with graphene	
-	based SA at 202 mW pump power (repetition rate of 12.1	
	kHz)	92
Fig. 4.8	The pulse envelop at a pump power of 202 mW	92
Fig. 4.9	Repetition rate and pulse width as a function of pump	
U	power	94
Fig. 4.10	Output power and pulse energy versus pump power	95
Fig. 4.11	RF spectrum of the O-switched TDFL at 10.8 kHz	
	repetition rate	96
Fig. 4.12	Experimental setup of the proposed graphene based O-	20
1.18. 11.12	switched TDFL	97
Fig 4 13	Output spectrum of the O-switched	98
Fig. 4.14	The pulse train for the proposed TDFL with multi-layer	70
116. 1.1 1	graphene film based $S\Delta$ at the threshold with the repetition	
	rate of 6.73 kHz	90
Fig. 1.15	Enlarge pulse width spectrum with pulse width of 11.41 us	100
Fig. 4.15	Repetition rate and pulse energy as a function of nump	100
11g. 4 .10	nower	100
Fig. 1.17	Output power and pulse energy versus pump power	100
Fig. 4.17	Paman spectrum obtained from the CNT film	101
Fig. 4.10	Output power characteristic against the pump power with	105
Fig. 4.19	and without the SA	107
Fig. 4.20	The output spectrum of the ring TDFL with and without	
C	the SA	107
Fig. 4.21	Q-switching pulse train at the pump power of 191.7 mW	108
Fig. 4.22	The pulse envelop of the Q-switched laser at the pump	
U	power of 191.7 mW	109
Fig. 4.23	Repetition rate and pulse width as a function of pump	
U	power	110
Fig. 4.24	Average output power and pulse energy as a function of	
U	pump power	111
Fig. 4.25	Schematic configuration of the proposed O-switched	
U	TBDFL with CNT saturable absorber	112
Fig. 4.26	Output spectrum of O-switch laser at 106.6 mW pump	
0	power with the presents of SA and the CW laser spectrum	
	at its threshold (67 mW) without using the SA	113
Fig. 4.27	The average output power against 802 nm pump power	114
Fig. 4.28	The enlarged output spectrum of the O-switched laser at	
1 19. 1120	the 802 nm pump power of 106 6 mW	114
Fig. 4 29	(a) The envelop of the single pulse and (b) Typical O-	
1.15. 1.27	switching pulse trains at the pump power of 113.6 mW	116
Fig 4 30	Fig 4.30: Repetition rate and pulse width as a function of	110
1 15. 7.30	nump nower	117
Fig 4 31	Average output power and pulse energy as a function of	11/
1 16. 7.31	numn nower	117
	hamb hower	11/

LIST OF ABBREVIATIONS

SYMBOLS

ASE	Amplified Spontaneous Emission
Bi	Bismuth
CW	Continuous Wave
CNT	Carbon Nanotube
Er	Erbium
FBG	Fiber Bragg Grating
FWHM	Full Width Half Maximum
GaAlAs	Gallium Aluminium Arsenide
GSA	Graphene Saturable Absorber
Но	Holmium
LD	Laser Diode
MCVD	Modified Chemical Vapor Deposition
MWCNT	Multi-walled Carbon Nanotube
Nd	Neodyium
OPM	Optical Power Meter (OPM)
OSA	Optical Spectrum Analyzer
PC	Polarisation Controller
PD	Photo-detector
Pr	Praseodymium
PVA	Polyvinyl Alcohol
SA	Saturable Absorber
SMF	Single Mode Fiber

- SPM Self-Phase Modulation
- SWCNT Single-walled Carbon Nanotubes
- TBDF Thulium Bismuth co-doped Fiber
- TBDFL Thulium Bismuth co-doped Fiber Laser
- TDF Thulium Doped Fiber
- TDFL Thulium Doped Fiber Laser
- Tm Thulium
- WDM Wavelength Division Multiplexing
- XPM Cross-Phase Modulation
- Yb Ytterbium

CHAPTER 1

INTRODUCTION

1.1 Background

Light Amplification by the Stimulated Emission of Radiation (LASER) has been used in many popular culture science fictions and other futuristic weapon in the movies. In the reality, lasers have produced powerful sources of photons that have been used in many industrial applications. The laser is one of the most significant technologies of the late twentieth century. It was first invented in 1958 and since then many new technologies based on lasers were established for various applications (Schawlow & Townes, 1958). The idea of laser originated from Albert Einstein's theory on 'Stimulated Emission' in which, when it encounters a photon, matter may lose energy by emitting the exact same photon. As a result, the amplification of light is achievable under condition of population inversion. In addition to the gain media, another essential device is the optical cavity (resonator) in which the light can circulate and get amplified. As long as the gain is larger than the loss, the power of the light in the laser cavity quickly rises. Significant power output is thus only achievable above the so-called laser threshold, the power of which the small-signal gain is just sufficient to compensate the cavity loss.

The first laser action was demonstrated by Theodore H. Maiman in 1960 at Hughes Research Laboratories in Malibu, California using 2 cm long ruby (chromium in corundum) cylinder as the active gain medium (Maiman, 1960). A flash lamp was used to pump the ruby rod in generating laser at 694 nm. However, Gordon Gould was the first person to use the word 'laser'. Interestingly, in 1962 the first diode laser was developed by Robert N. Hall at the General Electric (Hall, Fenner, Kingsley, Soltys, & Carlson, 1962) (Feng et al., 2006). It was a gallium-arsenide p-n junction emitting at the wavelength of 842 nm. The development of a powerful and efficient diode laser has been essential for fiber laser development due to their employment as pump sources. Meanwhile, the first visible wavelength laser diode was demonstrated by Nick Holonyak Jr later in 1962 (Held, 2008). Since then laser physics has always been driven by a genuinely scientific quest to extend existing limits such as higher power, shorter pulse, narrower linewidth and new wavelength. Over the last fifty years, developments in the laser field have occurred at a rapid pace. Many new lasers have been discovered, each with its own special properties and applications, showing dramatic improvement in their cost, performance or practicality.

Recently a great deal of researches on 2 μ m laser have been conducted in both solid-state laser and fiber laser field because of its wide applications in medicine, remote sensing, lidar, range finder, military applications and molecular spectroscopy (Wu, Yao, Zong, & Jiang, 2007) (Harun et al., 2012) (Geng, Wu, Jiang, & Yu, 2007). The strong absorption by water and the weak absorption by human tissues at 2 μ m also nominate it as an ideal wavelength for biological and medical applications including laser angioplasty in the coronary arteries, ophthalmic procedures, arthroscopy, laparoscopic cholecystectomy and refractive surgeries. In addition, other features of 2 μ m lasers such as the lower atmospheric absorption, smaller scattering and 'eye-safe' property make the wavelength desirable for material processing, ranging, low altitude wind shear and remote sensing, which includes Doppler lidar wind sensing and water vapor profiling by differential absorption lidar (DIAL). Such wavelength is also an ideal pump source for midinfrared optical material.

The 2 μ m laser can be realized using a Thulium doped fiber (TDF) as the gain medium. The TDF laser (TDFL) was firstly discovered by Hanna et al. in 1988 with a 797 nm dye laser as the pump source. Meanwhile, the first 2 μ m Q-switched TDFL was carried out in 1993 by an acousto-optic modulator (Myslinski et al., 1993). The pulsed laser has many potential applications such as in 2 - 4 μ m pumping (Creeden et al., 2008) (Godard, 2007) and medical applications (Esterowitz & Pinto, 1993). The Q-switched TDFL can be realized by either active or passive techniques. The active Q-switching is based on an active loss modulation with a Q-switcher and thus its pulse repetition rate can be externally controlled. Normally, active Q-switches are mechanical Q-switches, electro-optical Q-switches and acousto-optic Q-switches. Besides that, as an alternative to the active Q-switched laser, the passively Q-switched laser gives low cost, reliable operation without high voltages. In this thesis, Q-switched 2 micron fiber lasers are proposed using a passive saturable absorber (SA) using TDF or Thulium Bismuth co-doped fiber (TBDF) as the gain medium.

1.2 Motivation

The growing interest in various laser applications with emissions within the two micron spectral region motivated this research work. The 2 micron fiber lasers can be achieved using a TDF as the gain medium. The TDFL operates within the 1800 nm to 2100 nm wavelength region, which falls into the eye-safer category of

lasers. This gives it potential advantages over 1 µm lasers especially for industrial and military applications. For instance, these lasers can be deployed in military laser weapon systems to replace 1 micron laser systems, which can cause serious eye hazard since their beams are invisible and the power can be imaged onto the retina. To date, pulsed laser systems may be used either for direct applications such LIDAR and range finding, or for conversion into the mid-IR for countermeasures, remote sensing, and spectroscopy applications.

In order to optimise the lifetime of ${}^{3}F_{4}$ and ${}^{3}H_{5}$ levels in TDF, co-doping with other elements such as Erbium, Ytterbium, Terbium and Bismuth has been attempted (Librantz, Gomes, Pairier, Ribeiro, & Messaddeq, 2008) (Braud et al., 2000). For instance, co-doping with Ytterbium is reported by Braud in which energy transfer from Ytterbium to Thulium reduces the effective lifetime of ${}^{3}F_{4}$ level (Braud et al., 2000). In this work, lasing at 1900 nm region is experimentally demonstrated using a TBDF as the gain medium for the first time. In addition to the cross relaxation process between thulium ions, this fiber provides effective energy transfer channels from bismuth to thulium, resulting in higher amplification efficiency in this region. The performance of the proposed TBDFL is then compared with a TDFL, which was obtained by using a commercial TDF.

1.3 Problem Statements

Compared to their 1 μ m and 1.55 μ m counterparts, 2 μ m laser sources are more favourable pump sources for mid-IR generation for several reasons. First, quantum defects are lower at 2 μ m, yielding higher quantum efficiency for generating mid-IR wavelengths. Second, many nonlinear crystals used for mid-IR generation are not transparent or have a much higher absorption at pump wavelengths shorter than 2 pm. Third, dispersion is too high at shorter wavelengths in some nonlinear crystals to achieve phase-matching for nonlinear parametric processes. And finally, 2 μ m fibers can have larger core sizes and higher nonlinear thresholds, enabling higher-power 2 μ m lasers and consequently, higher-power mid-IR output.

To date, many different glass host materials have been used to fabricate TDF for 2 μ m laser operation, including silica and non-silica glass fibers such as germanate- and tellurite-based types. It is well known that the doping concentration of rare-earth ions in silica fiber is limited due to the intrinsic glass network structure. So that, various approaches have been developed to increase the doping concentration including co-doping with B₂O₃. The highest doping level in silica glass is limited to approximately 2 wt%. Due to the limited Thulium doping concentration, quantum efficiency of Thulium doped silica fiber lasers is also limited. The doped fiber has improved mechanical strength and better compatibility with silica fiber than other multicomponent glass fibers for more robust fusion splicing. Here, a new fiber so-called Thulium Bismuth co-doped fiber (TBDF) is developed to overcome the limitation of the conventional TDF. The conventional TDFL normally requires a high threshold pump power and thus cannot be pumped by a low power commercial laser diode.

In passive Q-switching using saturable absorption, CNTs are known to provide distinct advantages in their ultra-fast recovery time and wide absorption bandwidth compared to their semiconductor-based counterparts. Recently, many works have been reported on the use of CNT-based saturable absorbers for the implementation of Q-switched lasers. Most of these works focus on 1550 nm and 1060 nm applications using an erbium or ytterbium doped fiber gain media, respectively (Harun et al., 2012). There is still a lack of research work in 2 micron region.

Recently, a new member of carbon nanotubes family called multi-walled carbon nanotubes (MWCNTs) have also attracted much attention for nonlinear optics applications due to their lower production cost, which is 50% - 80% cheaper than the SWCNT material introduced in this thesis. Compared with SWCNTs, the MWCNTs have higher mechanical strength, photon absorption per nanotube and better thermal stability due to its higher mass density. In this thesis, the use of MWCNTs for SA in fiber laser is demonstrated for the first time.

1.4 Objectives

The principal objective of this thesis and its chapter are to develop efficient 2 micron fiber lasers operating in both continuous wave (CW) and Q-switched pulse schemes. A Thulium-Bismuth co-doped fiber laser (TBDFL) is proposed and developed to generate an efficient laser within the $1.8 \sim 2 \mu m$ region. In addition to the cross relaxation process between thulium ions, TBDF provides effective energy transfer channels from bismuth to thulium, resulting in higher amplification efficiency at this region. To achieve the main objective, few secondary objectives have been proposed to guide the research direction, i.e.:

- To analyze a 2 μ m laser emission using a commercial TDF as the gain medium.
- To investigate and compare the performance of TBDFL with the TDFL in terms of slope efficiency and threshold pump power.
- To generate a room temperature all-fiber dual-wavelength Thulium Bismuth co-doped fiber laser (TBDFL) operating in the 1900 nm region using a single fiber Bragg Grating (FBG) in a ring configuration.
- To develop Q-switched 2 micron fiber lasers using both commercial TDF and TBDF as the gain medium in conjunction with a passive saturable absorber.
- To evaluate both graphene and multi-walled carbon nanotubes saturable absorbers in producing energetic Q-switched pulses in the 2 micron wavelength region.

1.5 Research Methodology

These researches are carried out based on a standard research methodology. Before commencing any experiments, a literature review and understanding of operating principles of the TDFL and TBDFL are undertaken. After the review is completed, the development of Thulium Bismuth doped fiber (TBDF) was done with the assistance from our collaborator from Central Glass and Ceramic Research Institute (CGCRI), India. The lasing experiments were then carried out to compare the performance characteristic between the newly developed TBDF and the commercial TDF. The main characteristics such as ASE, slope efficiency and threshold are investigated.

Pulsed operation in Q-switching is achieved by using a homemade saturable absorption. A saturable is an optical component in which absorption decline when the incoming light intensity is raised. Two types of saturable absorbers (SAs); graphene and MWCNT were developed and used in this study. In fabricating a graphene based SA, the first step is to produce graphene flakes using electrochemical exfoliation process. The graphene flakes are processed and mixed with various polymer solutions to fabricate a graphene film. In the case of MWCNT, the carbon nanotubes powder is added with functionalizer solution so that it can be dissolved in water. The carbon nanotubes composite is also mixed with the polymer solution to fabricate the film. The SA is fabricated by cutting a small part of the prepared film by approximately $2 \times 2 \text{ mm}^2$ and sandwiching it between two FC/PC fiber connectors. Apart from that, the performance evolution of the SA such as Raman spectroscopy is investigated. The Q-switched fiber lasers were then constructed by using either a commercial TDF or the TBDF as the gain medium. The lasing and Q-switching performances are investigated and then compared. Fig. 1.1 shows the flow chart of our research methodology.

Fig 1.1: Research methodologies for the thesis

1.6 Thesis Overview

In this thesis, we focus on developing a 2 micron fiber laser operating in both CW and Q-switching modes using two different gain media; commercial TDF and the newly developed TBDF. This thesis is arranged into five chapters, where the background on fiber laser, introduction on the TDFL, motivation and objective of the proposed work are described in this chapter.

Chapter 2 is devoted to some fundamental and literature review of Thulium fiber laser, the discussion on pulse generation based on Q-switching as well as the potential of graphene and carbon nanotubes as a saturable absorber.

Chapter 3 presents an experimental investigation of the Thulium Bismuth co-doped fiber laser (TBDFL) characteristics and all fiber dual-wavelength TBDFL generation at room temperature. The performance comparison between TBDFL and TDFL is also demonstrated and discussed in this chapter.

Chapter 4 focuses on demonstrating stable passive Q-switched 2 micron fiber lasers using both the commercial TDF and TBDF as the gain medium. In this work, both multi-walled carbon nanotubes (MWCNT) and multi-layer graphene film based saturable absorber were used to realize a stable Q-switched fiber laser operating at 1900 nm region. The performance of these lasers is also compared for two different pumping schemes; 802 nm and 1552 nm.