PERFORMANCE EVALUATION OF PORTABLE BRIDGES USING NUMERICAL SIMULATIONS AND LABORATORY TESTS

AGUSRIL

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2014

DEDICATION

"Especially for ayah and mak, Syamsir and Alm Naimah. My beloved wife and sons, Vivi Anggraini, Muhammad Athar Al Rafee, and Muhammad Arkaan At Tariq". You give me strength to carry on.

ABSTRACT

Portable bridges are important for ground mobility to transport troops and vehicles through gaps like rivers, valleys, and lakes, or when an existing bridge gets damaged because of natural disaster or being attacked by enemy. Imported and expensive portable bridges have been deployed in such situation. The objectives of this research are to design and evaluate the performance of locally produced CFRP, AA 6061 T6 and Hybrid beams and their steel connectors. The available materials in this country were selected in order to produce affordable beams and also to reduce dependency on imported portable bridges. Aluminum design manual (ADM) and trilateral design and test code for military bridging and gap-crossing equipment (TDTC) were used in designing and testing of beams. Detailed design of the beam was carried out by numerically simulating the beams using MSC Patran/Nastran finite element software. The simulations were constrained by allowable strength of material and vertical displacement limit of L/180. Wet hand layup method was selected in fabrication of CFRP and Hybrid beams prototype, while AA 6061-T6 beam prototype was fabricated using welding method. Strains and displacements were recorded during structural testing of the beam. Maximum load that can be supported by CFRP beam is 11.3 kN which is lower than design load of 12.7 kN due to preliminary failure of CFRP layers at compression joints. AA 6061-T6 and Hybrid beam have shown good performance that they are able to support load up to the ultimate load (U). Addition of CFRP layers at the bottom

iii

flange of beam has reduced tensile strains and vertical displacements of beam by 38 % and 9 %, respectively against AA 6061-T6 beam. Production cost of AA 6061-T6 and Hybrid beam is only at 33.3% of imported LEGUAN bridge. It can be concluded that the joints of CFRP beam need to be redesigned in order to improve performance of the beam. The redesigned joints were used successfully in AA 6061-T6 and Hybrid beam that show good performance as designed. The beams can be produced locally using available materials and technology in Malaysia at a much lower cost than the imported product.

ABSTRAK

Jambatan mudah alih penting untuk mobiliti di darat bagi mengangkut anggota dan kenderaan merentasi halangan seperti sungai, lembah, dan tasik atau apabila jambatan sedia ada menjadi rosak disebabkan oleh bencana alam atau serangan musuh. Jambatan mudah alih yang mahal dan diimport biasanya akan digunakan pada keadaan sedemikian. Objektif penyelidikan ialah untuk mereka bentuk dan menilai prestasi rasuk CFRP, AA 6061 T6 dan Hybrid dan penyambung-penyambung keluli mereka. Bahan-bahan sedia ada di Negara ini dipilih untuk menghasilkan rasuk mampu milik dan juga mengurangkan ketergantungan kepada jambatanjambatan mudah alih yang diimpot. ADM dan TDTC digunakan untuk rujukan dalam merekabentuk dan ujian struktur terhadap rasuk Rekabentuk terperinci keatas rasuk telah dijalankan termasuk mensimulasikan kesan sudut-sudut dinding rasuk dan jenis pengukuh melintang dinding rasuk. Simulasi ini dikekang oleh kekuatan bahan dan had lenturan yang Kaedah 'wet hand-layup' telah terpilih dalam dibenarkan iaitu L/180. pembinaan prototaip rasuk CFRP dan Hybrid, sementara prototaip rasuk AA 6061-T6 difabrikasi menggunakan kaedah kimpal. Ketegangan dan lenturan telah direkodkan semasa ujian struktur keatas rasuk. Muatan maksimum yang boleh disokong olek rasuk CFRP ialah 11.3 kN yang mana lebih rendah dari beban rekabentuk iaitu 12.7 kN disebabkan kegagalan lapisan-lapisan CFRP di sendi-sendi mampatan. Rasuk AA 6061-T6 dan Hybrid mempertunjukkan prestasi yang baik yang mampu menyokong

v

beban sehingga beban muktamat (U). Tambahan lapisan CFRP di permukaan bebibir rasuk telah mengurangkan ketegangan tegang dan sesaran tegak rasuk sehingga 38 % dan 9 %, masing-masing. Kos pengeluaran rasuk AA 6061-T6 dan hybrid ialah pada 33% berbanding kos jambatan Leguan yang diimpot. Ia boleh disimpulkan bahawa sendi perlu direkabentuk semula supaya meningkatkan prestasi rasuk. Sendi sendi yang direkabentuk semula digunakan dengan jayanya di rasuk AA 6061 T6 dan Hybrid. Rasuk-rasuk ini boleh dihasilkan tempatan menggunakan bahan-bahan dan teknologi sedia ada dengan kos lebih rendah daripada produk yang diimport.

ACKNOWLEDGEMENT

My Grateful for Allah SWT.....

The author would extremely grateful to his supervisor, Col. Prof. Ir. Dr. Norazman Mohamad Nor and Assoc. Prof. Dr. Risby Mohd Sohaimi for the enthusiastic guidance, invaluable help, and encouragement in all aspects of this thesis. His numerous comments, criticisms and suggestions during the preparation of this thesis are gratefully acknowledged. His patience and availability for any help whenever needed with his heavy workload is appreciated. I am also very thankful to Col. Prof. Ir. Dr. Norazman Mohamad Nor for availability of E-science fund and PRGS grant for supporting the completion of this research.

I would like to thank fellow postgraduate students in Faculty of Engineering for their discussions, support, and social interaction during my study. My appreciation is also extended to all academic and non-academic member of Civil Engineering, for their warm hearted co-operation during my stay in of Universiti Pertahanan Nasional Malaysia. Acknowledgement is not complete without thanking to all technicians of UPNM Laboratory for helping either directly or indirectly in my work.

Heartfelt acknowledgements are expressed to my beloved wife "*Vivi* Anggraini". Without her sacrifices, patience, guidance, support, and encouragement in providing my higher education, I may never have overcome this long journey in my studies. A very special thank is offered to my sons "*Athar and Tariq*" for giving me spirit and strength during the difficult times of my study.

vii

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Norazman Mohamad Nor, PhD

Col Professor Ir Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Risby Mohd Sohaimi, PhD

Associate Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Member)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA DECLARATION OF THESIS

Author's full name	:	AGUSRII	2		
Date of birth	:	2 AUGUS	T 1981	(44)	
Title	:	SIMULA	SIMULATION ANALYSIS OF A FOLDABLE CARBON		
		FIBER	REINFORCED	HONEYCOMB	SANDWICH
		COMPOS	SITE BRIDGE		

Academic Session : 2009/2010

I declare that this thesis is classified as:

	CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
	RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
X	OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Pertahanan Nasional Malaysia reserves the right as follows:

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGN TURE

S524276

(PASSPORT NO.)

SIGNATURE OF SUPERVISOR

LT.COL. ASSOC. PROF. IR., DR. NORAZMAN BIN MOHAMAD NOR NAME OF SUPERVISOR

Date:

Date:

Note : * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

DEDICATION ABSTRACT ABSTRAK ACKNOWLE APPROVAL DECLARAT TABLE OF C LIST OF TAN LIST OF FIG LIST OF AB LIST OF SYN LIST OF AP	N EDGEMENTS ION CONTENTS BLES iURES REVIATIONS MBOLS PENDICES	Page ii vii viii ix x xiv xvi xxiv xxiv xxvi xxvi
	INTRODUCTION	
·	 1.1 Background 1.2 Problem statement and research questions 1.3 Objectives of study 1.4 Scope of study 1.5 Significance of study 1.6 Thesis Layout 	1 3 4 5 6
2	 PORTABLE BRIDGES 2.1 Introduction 2.2 Scissors launching assault bridges 2.3 Horizontal launching assault bridges 2.4 Composite Portable Bridges 2.5 Fiber reinforced polymer (FRP) for military bridges 	7 9 14 16 19
	2.5.1 Epoxy 2.5.2 Carbon Fiber 2.5.3 Carbon Fiber Reinforced Polymer (CFRP) 2.5.4 Honeycomb sandwich material 2.5.5 Manufacturing Techniques of CFRP	20 21 22 23 25
	 2.6 Aluminum alloy for military bridges applications 2.7 Joints of portable bridges 2.8 Scaling down concept of beam and load 2.9 Manufacturing Techniques of Aluminum Alloy 	26 28 31 32
	2.9.1 Groove weld 2.9.2 Fillet weld 2.10 Hybrid material (Aluminum Alloy + CFRP)	33 34 36

2.11 Structural testing of the portable bridges2.12 Finite element analysis of portable bridge	39 41
structures 2.12.1 Armored vehicle launched bridge (AVLB) 2.12.2 Scissor bridge	41 43
2.13 Summary	44
MATERIALS AND METHODOLOGIES	
3.1 Introduction	47
3.2 Material	4/
3.2.1 Carbon Fiber Reinforced Polymer Deam	40 ⊿0
3.2.3 AISI 4340 steel joints	51
3.3 Design codes	53
3.3.1 Calculation of loads	53
3.3.2 Scaling down concept of vehicle loads	56
3.4 CFRP beam prototype	58
3.4.1 Review of full scale GFRP beam	59 61
3.4.3 Fabrication of CFRP beam prototype	61
3.4.4 Structural testing of CFRP scaled down beam	66
prototype	
3.4.4.1 Static test instrumentation	67
3.4.4.2 Analysis of results of CFRP beam	70
3.5 Aluminum Alloy (AA) 6061-16 beam	71
3.5.1.1 Design of top flange	74
3.5.1.2 Design of bottom flange	75
3.5.1.3 Design of web	76
3.5.2 Detail design of AA 6061-T6 beam	77
3.5.2.1 Finite element analysis of AA 6061-T6 beam	78
3.5.2.2 Study on type of web stiffener	79
3.5.2.3 Study on effect of angle of the web on	80
3.5.3 Design of joints	86
3.5.3.1 Finite element analysis of Rod and Bolt	88
3.5.3.2 Finite element analysis of Joint A and Joint B	89
3.5.4 Design of AA 6061-T6 scaled down beam	93
T6 scaled down beam	93
3.5.5 Fabrication of AA 6061-T6 scaled down	93
3.5.6 Testing of AA 6061-T6 scaled down beam	94
3.6 Hybrid beam	98
3.6.1 Design and analysis of Hybrid scaled down beam prototype	99

3

3.6	5.2 Fabrication of scale down hybrid beam	100
3.6	3 Testing of scale down hybrid beam	102
3.7 Sur	nmarv	105
4 RESUL	TS AND DISCUSSION	
4.1 Inti	roduction	107
4.2 CF	RP beam	107
4.2	2.1 Review of beam	107
4.2	2.2 Scaled down beam prototype	108
4.2	2.3 Fabrication product of scaled down beam	108
4.2	2.4 Results of structural testing of CFRP beam	110
	4.2.4.1 Displacements	110
	4.2.4.2 Compressive strains	114
	4.2.4.3 Tensile strains	115
	4.2.4.4 Shear strains	116
4.2	.5 Conclusion on CFRP beam	118
4.3 AA	6061-T6 beam	119
4.3	.1 Preliminary Design and analysis of AA 6061-	119
4.0		100
4.3	5.2 Detail design of AA 6061-16 beam	120
4.3	3.3 Design of Joints	122
	4.3.3.1 Rod and boll 4.2.2.2 Loint A and Loint P	105
10	4.5.5.2 JUILLA AND JUILLE 4. Second down of AA 6061 T6 beam prototype	120
4.0	4 3 4 1 Einite element analysis of AA 6061	122
	T6 scaled down beam prototype	132
13	5 Eabrication of scaled down beam	135
4.3	$\Delta = 1$ Ability of a scaled down beam $\Delta = 100$	137
4.0	4 3 6 1Displacements	137
	4.3.6.2 Compressive strains	143
	4.3.6.3Tensile strains	145
	4.3.6.4 Compressive strains on joints	148
	4.3.6.5 Shear strains	152
4.3	3.7 Conclusion on AA 6061-T6 beam	155
4.4 Hy	brid beam	156
4.4	4.1 Design and analysis of Hybrid scaled down	156
	beam prototype	
4.4	4.2 Fabrication of scaled down Hybrid beam	159
	prototype	
4.4	4.3 Structural testing of Hybrid beam	161
	4.4.3.1 Displacements	161
	4.4.3.2 Compressive strains	165
	4.4.3.3 Tensile strains	167
	4.4.3.4 Shear strains	169
	4.4.3.5 Loading and unloading effect on	171
	hybrid beam	4 - -
4.4	4.4 Comparison of AA 6061 16 and Hybrid beam	172
4.4	4.5 Comparison between experimental obtained results and finite element analysis model of	172

		AA 6061 T6 and Hybrid beam prototypes	
	4.4.6	Conclusion on Hybrid beam	175
	4.5 Com	inarison on three beams produced with	176
	imported be	am	170
		many	170
	4.0 Sum	inary	175
5			
5	E 1 Introdu		100
	5.1 Introdu		102
	5.2 Conclu	sion	182
	5.2.1	Performance of three different portable	182
		bridges	
	5.2.2	Performance of steel joints of portable	183
		bridges	
	5.2.3	Validation of finite element model of scaled	184
	0.2.0	down beam prototype	
	524	Porformance and cost difference of three	10/
	J.2.4	design nortable bridges with imported	104
		design portable bridges with imported	
		portable bridge	
	5.3 Novelti	es / Research Contribution	185
	5.4 Recom	mendation for future research	186
REFERENC	ES		187
APPENDICE	S		198
ΒΙΟΠΑΤΑ Ο	FSTUDENT	•	250
		e	255
			200

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Military bridging functions	8
2.2	Summary of AA and Composite portable bridges	19
2.3	Typical mechanical properties of thermosetting resins	22
2.4	Mechanical properties of selected commercial reinforcing	23
	fibers	
2.5	Mechanical Properties of Carbon Fiber Reinforced	24
	Polymer	
2.6	Summary of mechanical properties of aluminum alloy for	28
	bridge applications	
3.1	CFRP layer contain 50 % carbon fiber	50
3.2	Mechanical Properties of Honeycomb Materials, Hex-	50
	Web 5.2-1/4-25(3003)	
3.3	Mechanical properties of Aluminum Alloy 6061 T6	51
3.4	Properties of AISI 4340	52
3.5	Load summary for one beam	55
3.6	Loading specification for full scale beam and scaled	56
	down beam prototype	
3.7	Comparison the stresses of full scaled and scaled down	58
	beam prototype	
3.8	Thickness and sequence of CFRP layers and Aluminium	62
	honeycomb (Agusril, 2010)	
3.9	Performance of beam with different type of web stiffener	81
3.10	Performance of beam with different angle of web	85
3.11	Design forces for joints and bolts design	88
4.1	Summary of strains and stresses on beam	118
4.2	Shear stress on various bolt sizes	123
4.3	Shear stress on various rod sizes	124
4.4	Stresses on various joint types	126
4.5	Maximum stress on joints and bolts	131
4.6	Summary of vertical displacements of AA 6061-T6 beam	141
4.7	Summary of compressive strains on beam	145

4.8	Summary of tensile strains on beam	148
4.9	Summary of strains on joints AISI 4340	151
4.10	Summary of shear strains on beam	154
4.11	Summary of finite element analysis results of beam	160
	prototypes	
4.12	Summary of maximum displacements of Hybrid beam	164
4.13	Summary of compressive strains on hybrid beam	166
4.14	Summary of tensile strains on beam	169
4.15	Summary of shear strains on beam	170
4.16	Comparison of strains and vertical displacements on AA	173
	6061 T6 and Hybrid beam	
4.17	Comparison experimental and FEA model results of AA	174
	6061 T6 prototype beam at load of 19.05 kN	
4.18	Comparison experimental and FEA results of hybrid	174
	scaled down beam at load of 15.27 kN	
4.19	Comparison of performance of beam	177
4.20	Comparison of cost and weight of beam prototype	177
4.21	Comparison of cost and weight of full scale beam with	178
	imported bridge beam	

LIST OF FIGURES

2.1	Battlefield graphic of bridging functions for US military	0
	forces	0
2.2	AVLB on top of launch vehicle	10
2.3	Cross section of AVLB	10
2.4	Cross section of HAB MLC 70	11
2.5	Side view of HAB	11
2.6	Bridge's panels for construction of No.10, No.11, and	13
	No.12 bridges	10
2.7	No.10 bridge being launched by Titan	13
2.8	No.12 bridge on launch vehicle Titan	14
2.9	Horizontal launching assault bridge	15
2.10	Cross section of horizontal sliding assault bridge	15
2.11	Composite Army Bridge, CAB	16
2.12	Aluminum honeycomb with hexagonal cell shapes	25
2.13	Schematic of hand lay-up process	26
2.14	Top and bottom center joints of AVLB	29
2.15	Top and bottom center joints of LEGUAN/WOLVERINE	29
2.16	Top and bottom joints of modular composite bridge (MCB)	30
2.17	Bottom or tension joints of advanced modular composite bridge (AMCB)	31
2.18	Groove welding detail drawing	34
2.19	Fillet welding detail drawing	36
2.20	Manufacture process of CFRP-AI composite pipes	38
2.21	Manufacture process of CFRP-Aluminum composite	20
	tubes	30
2.22	Sketch of static beam testing of CAB	39
2.23	Structural testing of short span FRC bridge	40

TITLE

PAGE

FIGURE NO.

2.24	Failure of FRP short span bridge due to apex crushing,	4
	web buckling, and tension failure at bottom flange	41
2.25	Finite element model of AVLB	42
2.26	A model of scissor-AVLB bridge with simple support and	40
	load at mid span of bridge	43
2.27	Geometry and finite element model of scissor-AVLB	
	bridge	44
3.1	CFRP specimens and aluminum honeycomb Hex-	40
	Web5.2-1/4-25(3003)	48
3.2	Testing of CFRP specimens	49
3.3	Vehicle loads on centerline of beam	54
3.4	Vehicle loads with eccentricity of 405 mm from	F 4
	centerline of beam	54
3.5	Mud load on top flange of beam	55
3.6	Wind load on side web of beam	55
3.7	Maximum tensile and compressive stress on full scale	
	beam, 100 and 51.6 MPa, respectively	57
3.8	Compressive and tensile stress of scaled down beam,	
	48.2 MPa and 100 MPa at top and bottom flange,	57
	respectively	
3.9	Flow chart of design of CFRP beam prototype	58
3.10	CFRP beam with three sections connected	59
3.11	Cross-section of CFRP beam	59
3.12	Proposed of steel joints	60
3.13	Locations of Joint A, B, C, C1, and D	60
3.14	Foldable concept of CFRP beam	61
3.15	Aluminum liner welded to the joint	63
3.16	Epoxy (2 Resin: 1 Hardener), carbon fiber sheets, roller	60
	and strain gauge rosette	63
3.17	Wrapping carbon fiber sheet on aluminum liner using	C 4
	hand-layup method	ю4
3.18	Aluminum honeycomb attached on the beam (50 % of	C A
	beam fabrication progress)	04

3.19	Distribution of load using six rods of beam prototype	68
3.20	Schematic illustration of experimental set up of CFRP	60
	beam	00
3.21	Location of strain gages and displacement transducers	69
3.22	Centric loading applied at center beam	69
3.23	Eccentric loading applied at center beam	70
3.24	Flow chart of AA 6061 T6 beam	72
3.25	Top and side views of AA 6061 T6 beam	73
3.26	Folding system of the beam	73
3.27	Dimension of top flange and intermediate stiffener due	75
	to uniform compression stress	75
3.28	Dimension of top flange and intermediate stiffener due	75
	to flexural stress	75
3.29	Dimension of bottom flange and web of beam	77
3.30	Model of AA 6061 T6 beam including the simple	70
	support, vehicle load and self-weight of the beam	13
3.31	Web stiffener type I	80
3.32	Web stiffener type II	80
3.33	Web stiffener type III (Selected)	80
3.34	Web angle of 0°	82
3.35	Web angle of 5°	82
3.36	Web angle of 10°	82
3.37	Web angle of 20°	83
3.38	Web angle of -5°	83
3.39	Web angle of -10°	84
3.40	Web angle of -20°	84
3.41	Joint A and B	86
3.42	Rod diameter 80 mm and bolt diameter 30 mm	87
3.43	Joint A and B connected by 1 piece rod and 16 pieces	07
	bolt	07
3.44	Tensile and shear force at bolt	89
3.45	Tensile and shear force at rod	90
3.46	Sketch of tensile and shear forces at bolt and rod	90

3.47	Tensile forces at Joint A (isometric view)	91
3.48	Shear forces at Joint A (isometric view)	92
3.49	Tensile forces at Joint (side view)	92
3.50	Shear forces at Joint (side view)	92
3.51	Schematic illustration of experimental set up of AA 6061 T6 beam	95
3.52	Experimental set up of AA 6061 T6 beam including data	05
	logger (at front side of beam	95
3.53	Locations of Strain gauges on top flange	96
3.54	Locations of Strain gauges on bottom flanges	96
3.55	Locations of Strain gauges on web	96
3.56	Vertical displacement transducer locations at bottom flanges	97
3.57	Horizontal displacement transducer locations at web	97
3.58	Flow chart of hybrid beam	98
3.59	Model of CFRP layers that will be bonded at bottom flange of AA 6061-T6 beam	100
3.60	Schematic illustration of experimental set up of hybrid	400
	beam	102
3.61	Experimental set up of hybrid beam including data logger (at back side of beam)	103
3.62	Strain gauges locations at top flange	103
3.63	Strain gauges locations at bottom flanges	104
3.64	Strain gauges locations at web	104
3.65	Displacement transducer locations at bottom flanges	104
4.1	CFRP beam	108
4.2	Cross section of scaled down beam prototype (centre beam)	109
4.3	The actual joints	109
4.4	CFRP beam with strain gauges attached to it	110
4.5	Mid-span vertical displacements versus applied load on the beam	111
4.6	Vertical displacement along the beam at maximum load	112

(12.9 kN)

4.7	Different deflections between west and east side of	112				
	beam after failure of beam					
4.8	Detail of Joint A-B and Joint C-D after maximum load,					
	new gaps were created due to crushing of epoxy at	113				
	joints					
4.9	Sketch of Joint A-B before and after crushing of CFRP	112				
	layer at joints	115				
4.10	Sketch of C-D joints before and after failure in	11/				
	compression	114				
4.11	Compressive strains distribution at top flange of beam	115				
4.12	Tensile strains distribution at bottom flange of beam					
4.13	Shear strains of beam's vertical web due to centric load	447				
	at maximum load (11.72 kN)	117				
4.14	Shear strains of beam's vertical web eccentric load at	117				
	maximum load (11.72 kN)	117				
4.15	Dimension of beam after preliminary design (center	100				
	section)	120				
4.16	Cross-section of the center beam after detail design	121				
4.17	Maximum tensile and compressive stress on beam, 100	101				
	and 51.6 MPa, respectively	121				
4.18	Maximum shear stress on bottom flange of beam	122				
4.19	Maximum shear stress of 30 mm \varnothing bolt is 586 MPa	124				
4.20	Maximum shear stress of 60 rod mm $arnothing$ is 532 MPa	125				
4.21	Maximum tensile stress of 285 MPa of Joint A1	126				
4.22	Maximum tensile stress of 291 MPa of Joint A2	127				
4.23	Maximum tensile stress of 312 MPa of Joint A3	127				
4.24	Maximum tensile stress of 437 MPa of Joint A4	128				
4.25	Maximum tensile and compressive stress of Joint A5 is	100				
	627MPa and 188 MPa	128				
4.26	Maximum shear stress of Joint A5 is 376 MPa	129				
4.27	Maximum tensile and compressive stress of Joint B is	100				
	633 MPa and 169 MPa respectively	130				

4.28	Maximum shear stress of Joint B is 385 MPa				
4.29	Beam prototype dimensions				
4.30	Cross section of AA beam prototype				
4.31 Vertical displacements (z-direction) at front and back side of beam					
4.32	Compressive strain at top flange of mid span of beam	134			
4.33	Tensile strains at bottom flange of beam of 1395 μs and				
	1205 μs at right and left side of beam, respectively.	134			
4.34	Joint A and B fabricated using CNC machine	135			
4.35	Joint A and B connected using 16 mm \varnothing rod	135			
4.36	Tapered beam with web stiffener	136			
4.37	Joint A-B attached on the beam	137			
4.38	Vertical displacements at DT 5 (front @ center)	138			
4.39	Vertical displacements at DT 2 (back @ center)	139			
4.40	Torsion twist distribution on beam	139			
4.41	Vertical displacement distributions of DTs (7, 4, 5, 6, and 8)	140			
4.42	Vertical displacement distributions of DTs (7, 1, 2, 3, and 8)	140			
4.43	Horizontal displacements at side web (DT 9)	142			
4.44	Horizontal displacements at side web (DT 10)	142			
4.45	Sketch of horizontal and vertical displacements at side				
	web (DT 9 and 10) and bottom flange (DT 5 and DT 2) at ultimate load (U) test	143			
4.46	Compressive strains at strain gauges L4	144			
4.47	Compressive strains distributions of strain gauges L (1,	111			
	2, 3,4, 5, 6 and 7)	144			
4.48	Tensile strains at strain gauges L11	146			
4.49	Tensile strains at strain gauges L14	146			
4.50	Tensile strains distributions of strain gauges L (8, 11, and 12), back side of beam	147			
4.51	Tensile strains distributions of strain gauges L (13, 14, and 17), front side of beam	147			

xxi

4.52	Linear strain gauges at joint	148			
4.53	Linear strain gauges L9 (Joint A) and L10 (Joint B) at	140			
	front side of beam	149			
4.54	Linear strain gauges L15 (Joint B) and L16 (Joint A)at	1/0			
	back side of beam	149			
4.55	Strains at Joint (L9 and L10) at ultimate load (U)	150			
	application	150			
4.56	Strains at Joint (L15 and L16), back side at ultimate load	151			
	(U) application	101			
4.57	Shear strains at strain gauges R (1 and 5)				
4.58	Shear strains at strain gauges R (6 and 10)	153			
4.59	Shear strains distributions of strain gauges R (1, 2, 3, 4	153			
	and 5), front side	100			
4.60	Shear strains distributions of strain gauges R (6, 7, 8, 9,	154			
	and 10)	104			
4.61	Cross section of hybrid beam (center beam)	157			
4.62	Vertical displacement of beam	158			
4.63	Maximum compressive strain at top flange of beam	158			
4.64	Maximum tensile strains at right and left of bottom	150			
	flange	100			
4.65	Before and after photos of CFRP layers attached on	160			
	bottom flanges of AA 6061 T6 beam	100			
4.66	Vertical displacements at DT2 (back) and DT4 (front)	162			
4.67	Torsion twist at mid span of beam (DT2 and DT4)	162			
4.68	Vertical displacement distributions of DTs (1, 2, and 3)	163			
	at ultimate load (U)	105			
4.69	Average vertical displacements of bottom flange of	16/			
	beam (between DT2 and DT4)	104			
4.70	Compressive strains at strain gauges L4	165			
4.71	Compressive strains distributions of strain gauges L (1,	166			
	2, 3, 4, 5, 6 and 7)	100			
4.72	Tensile strains distributions of strain gauges L (8, 9, and	167			
	10) and L (11, 12, and 13)	107			

	4.73	Tensile strains at strain gauges L9 (back side)	168	
	4.74	Tensile strains at strain gauges L12 (front side)	168	
4.75 Shear strains distributions of strain gauges R (1, 2, ar				
		3), back side of hybrid and AA 6061 T6 beams	170	
	4.76	Vertical displacements of DT4 for load and unload	171	
		condition	171	
	4.77	Compressive strain at L4 for load and unload condition	171	
	4.78	Tensile strains at L12 for load and unload condition	172	
	4.79 Comparison of weight and production cost of imported			
		bridge beam with designed CFRP, AA 6061 T6 and	179	

Hybrid beams

LIST OF ABREVIATIONS

AA	-	Aluminum Alloy
ADM	-	Aluminum Design Manual
AISI	-	American Iron and Steel Institute
AMCB	-	Advance Modular Composite Bridge
AVLB	-	Armor Vehicle Launched Bridge
CAB	-	Composite Army Bridge
CFRP	-	Carbon Fiber Reinforced Polymer
FM	-	Field Manual
FRP	-	Fiber Reinforced Polymer
GFRP	-	Glass Fiber Reinforced Polymer
GMAW	-	Gas Metal Arc Welding
GTAW	-	Gas Tungsten Arc Welding
HAB	-	Heavy Assault Bridge
MCB	-	Module Composite Bridge
MLC	-	Military Load Class
TDTC	-	Trilateral Design and Test Code for Military
		Bridging

LIST OF SYMBOLS

- *E*₁₁ Elastic modulus in fiber direction (longitudinal)
- *E*₂₂ Elastic modulus in transverse direction
- *v*₁₂ Poisson's Ratio
- G₁₂ Shear modulus
- λ_s slenderness ratio of an element with an intermediate stiffener
- *I*_o moment of inertia of element
- *t* Thickness of element
- *S*₁ Slenderness ratio at the intersection of the equations for yielding and inelastic buckling
- *B_c* Buckling constant intercept for compression in columns and beam flanges
- *F_{cy}* Compressive yield strength
- *D_c* Buckling constant slop for compression in columns and beam flanges
- *F_e* Elastic buckling stress
- λ_{eq} equivalent slenderness ratio for alternate
 determination of compressive strength for flexure
 or axial compression
- *B_{br}* Buckling constant intercept for bending compression in flat elements
- *D*_{br} Buckling constant slop for bending compression in flat elements
- *F_{ty}* Tensile yield strength
- *P_n* Nominal tensile strength
- A_g Gross cross-sectional area
- Ω_t Safety factor for tension (1.85 for bridge-type structure)
- σ_t Tensile stress of bottom flange
- *I_x* Moment of inertia of the beam's cross-section