YAW CONTROL OF A 3-AXLE SINGLE TRAILER TRUCK USING STEERABLE WHEEL OPTIMISED WITH GRAVITATIONAL SEARCH ALGORITHM

MUHAMAD AFIQ BIN MOHD YUSSOF

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science (Mechanical Engineering)

ABSTRACT

A single-trailer truck plays an important roles of transportation in the economics of modern societies. Despite several advantages in transportation, this vehicle is often involved in a road accident such as skidding, jack-knifing, trailer oscillation, and others led by the unwanted yaw rate on this vehicle while manoeuvring. The stability of the vehicle has been the most concern as it can provide unwanted response properties while traveling at high speeds. This study proposed the development of the yaw rejection control for single-trailer truck using a steerable wheel located at the middle axles. This controller is implemented in order to reduce yaw disturbance which is lateral stability on single-trailer truck vehicles while manoeuvring. The yaw rejection control system was proposed using a PID controller and the controller parameters were optimized using Gravitational Search Algorithm (GSA) to obtain the optimal responses. Then, the result of the active model responses is compared with the result of the passive model response in terms of magnitude and percentage of difference using the RMS method. The proposed yaw rejection controller shows the highest reduction of 34.66% RMS reduction for lateral acceleration response and 22.92% RMS reduction for yaw rate response. Lastly, the yaw rejection controller was validated on a small scale of single-trailer truck vehicle model and steerable wheel actuator through the Hardware-in-the-loop simulation. The results showed that the yaw rejection controller successfully generated realistic steering wheel actions for the steerable wheel in stabilising yaw moment of the truck vehicle while manoeuvring.

ABSTRAK

Lori treler tunggal memainkan peranan penting dalam pengangkutan yang penting dalam sector ekonomi masyarakat moden. Walaupun terdapat banyak kelebihan dalam pengangkutan, kenderaan ini sering kali terlibat dalam kemalangan jalan raya seperti tergelincir, "jack-knifing", treler berayun, dan lain-lain disebabkan oleh kadar pusingan yang berlebihan pada kenderaan ketika melakukan manuver. Kestabilan kenderaan menjadi perhatian utama kerana ia dapat memberikan kesan yang tidak diingini ketika memandu dengan kelajuan tinggi. Kajian ini mencadangkan pembinaan kawalan penolakan pusingan untuk sebuah trak treler tunggal menggunakan roda boleh dikendalikan yang diletakkan di gandar tengah. Pengawal ini dilaksanakan untuk mengurangkan gangguan pusingan untuk kestabilan sisi pada kenderaan trak treler tunggal semasa pemanduan. Sistem kawalan penolakan pusingan dikendalikan menggunakan pengawal PID dan parameter pengawal dioptimumkan menggunakan Gravitational Search Algorithm (GSA) untuk mendapatkan tindakbalas yang optimum. Kemudian, hasil tindakbalas model aktif dibandingkan dengan hasil tindakbalas model pasif dari segi magnitud dan peratusan perbezaan menggunakan kaedah RMS. Hasil prestasi pengawal penolakan pusingan tertinggi adalah pengurangan RMS 34.66% tindakbalas pecutan lateral dan pengurangan RMS 22.92% tindak balas kadar yaw. Terakhir, pengawal penolakan pusingan disahkan pada skala kecil model kenderaan trak tunggal melalui simulasi Hardware-in-the-loop. Hasil kajian menunjukkan bahawa pengawal penolakan yaw berjaya menghasilkan signal roda kemudi yang realistik oleh penggerak pada kenderaan semasa manuver.

ACKNOWLEDGEMENT

Alhamdulillah. My greatest gratitude goes to the most merciful Allah S.W.T. for his blessing and willing in giving me the opportunity and health to complete this study in Universiti Pertahanan Nasional Malaysia (UPNM). I would like to express my sincerest gratitude to my supervisor, Dr. Noor Hafizah Amer for her guidance, support and consistant encouragement throughout my research. Also for my cosupervisor, Dr. Zulkiffli Abd. Kadir and Associate Professor Dr. Khisbullah Hudha for intuitive advise and guidance along the completion of this study.

I also would like to take this opportunity to thank my colleagues at the Faculty of Engineering, Department of Mechanical Engineering, UPNM, Muhammad Luqman Hakim Bin Abdul Rahman, Sabirin Rahmat, Akhimullah Subari, Muhammad Nadwi Hakimi bin Adnan, Mohamad Hafiz Harun for their outstanding collaborations for being a very good sharing partner throughout my research. Thanks also to my other colleagues at Automotive Laboratory for the cooperation and providing an enjoyable study environment.

Finally, my deepest grateful and thanks go to my parents, Mohd Yussof bin Muhamad, Nafsiah binti Said and my lovely siblings. Their continuous prays and moral support have given me a great spirit in completing this research and thesis.

APPROVAL

The Examination Committee has met on **9 June 2022** to conduct the final examination of **Muhamad Afiq bin Mohd Yussof** on his degree thesis entitled **Yaw Control of a 3-Axle Single-Trailer Truck using Steerable Wheel Optimised with Gravitational Search Algorithm.**

The committee recommends that the student be awarded the of Master of Science (Mechanical Engineering).

Members of the Examination Committee were as follows.

Prof. Madya Dr. Ku Zarina binti Ku Ahmad

Faculty of Mechanical Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Kol Prof. Madya Dr. Khairul Hasni bin Kamarudin (B)

Faculty of Mechanical Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Ts Dr. Fauzi bin Ahmad

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science (Mechanical Engineering)**. The members of the Supervisory Committee were as follows.

Noor Hafizah Amer, PhD

Faculty of Mechanical Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Zulkiffli Bin Abd. Kadir, PhD

Faculty of Mechanical Engineering Universiti Pertahanan Nasional Malaysia (Co-supervisor)

Assoc. Prof. Khisbullah Hudha, PhD

Faculty of Mechanical Engineering Universiti Pertahanan Nasional Malaysia (Co-supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Muhamad Afiq bin Mohd Yussof
Date of birth	: 02 August 1996
Title	: Yaw Control of a 3-Axle Single Trailer Truck Using Steerable Wheel Optimised With Gravitational Search Algorithm
Academic session	: 2019 / 2020

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL	Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

960802055467

IC/Passport No.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
APPROVAL	v
APPROVAL	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xxi

CHAPTER

1	INT	RODUCTION		
	1.1	Resear	ch Overview	1
		1.1.1	Background on Heavy Vehicle	1
		1.1.2	Background on Yaw Rejection Controller	
			Development for Single-trailer truck Vehicles	3
	1.2	Proble	m Statement	6
	1.3	Resear	ch Objectives	7
	1.4	Resear	ch Scope	8
		1.4.1	Vehicle Model Development	8
		1.4.2	Control System Development	10
		1.4.3	Implementation of Control System	10

	1.5	Research Methodology	11
	1.6	Thesis Outline	15
2	LIT	ERATURE REVIEW	17
	2.1	Introduction	17
	2.2	Previous Works on Single-Trailer Truck Vehicle Model	
		Development	17
		2.2.1 Geometric Vehicle Model	18
		2.2.2 Kinematic Vehicle Model	19
		2.2.3 Dynamic Vehicle Model	23
		2.2.4 Summary on Vehicle Models	27
	2.3	Previous Works on Yaw Rejection Control of a	
		Single-Trailer Truck	28
		2.3.1 Direct Yaw Control (DYC)	28
		2.3.2 Torque-Vectoring Controller	29
		2.3.3 Trailer Steering Control	30
		2.3.1 Summary on Yaw Rejection Controller	31
	2.4	Performance Criteria for Yaw Rejection Control	
		of a Single-Trailer Truck	32
	2.5	Literature Summary and Research Gap.	34
3	MO	DELLING AND VALIDATION OF 16-DOF SINGLE	-
	TRA	ALLER TRUCK VEHICLE WITH PITMAN ARM	
	STE	ERING SYSTEM	37
	3.1	Introduction	37
	3.2	Development of Single-Trailer Truck Simulation	
		Model	38

	3.2.1	Modelling Assumptions	39
	3.2.2	Truck Handling Model	40
	3.2.3	Trailer Handling Model	42
	3.2.4	Hitch Model	44
	3.2.5	Load Distribution Model	45
	3.2.6	Longitudinal and Lateral Slip Angle Model	47
	3.2.7	Tyre Model	49
3.3	Verifica	ation of Hitch Model	51
3.4	Verifica	ation of Single-Trailer Truck Model	56
	3.4.1	Results and Analysis for Double Lane Change	
		(60 km/h)	57
	3.4.2	Results and Analysis for Single Lane Change	
		(60km/h)	60
	3.4.3	Results and Analysis for Double Lane Change	
		in (80 km/h)	
		633	
	3.4.4	Results and Analysis for Single Lane	
		Change (80km/h)	65
3.5	Summa	ry	68
DEV	ELOPM	IENT ELECTRONIC CONTROLLER FOR	
STE	ERABLI	E WHEEL OF TRUCK MIDDLE AXLE	
699			
4.1	Introdu	ction	69
4.2	Develop	pment of Steerable Wheel using Second Order	
	Transfe	r Function	70
	 3.3 3.4 3.5 DEV 699 4.1 4.2 	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 Verifica 3.4 Verifica 3.4.1 3.4.1 3.4.2 3.4.3 3.4.3 3.4.3 3.4.4 3.5 Summa DEVELOPM STEERABLI 699 4.1 Introdu 4.2 Develop Transfe	3.2.1Modelling Assumptions3.2.2Truck Handling Model3.2.3Trailer Handling Model3.2.4Hitch Model3.2.5Load Distribution Model3.2.6Longitudinal and Lateral Slip Angle Model3.2.7Tyre Model3.2.8Verification of Hitch Model3.4Verification of Single-Trailer Truck Model3.4.1Results and Analysis for Double Lane Change (60 km/h)3.4.2Results and Analysis for Single Lane Change in (80 km/h)3.4.3Results and Analysis for Single Lane3.4.4Results and Analysis for Single Lanechange (80km/h)3.5SummatriLEVENDENT ELECTRONIC CONTROLLER FORGevelopment of Steerable Wheel using Second Order Transfer Function

4.3	Verifica	ation on Steerable Wheel using Second	
	Order T	ransfer Function.	73
4.4	Develop	pment of Control System for Steerable Wheel	
	Actuato	r	75
4.5	Position	Tracking Control of Steerable Wheel Actuator	76
4.6	Summar	ry	78
DEV	ELOPM	ENT AND OPTIMISATION OF YAW	
REJ	ECTION	CONTROL FOR SINGLE-TRAILER	
TRU	CK USI	NG STEERABLE WHEEL	80
5.1	Introduc	etion	80
5.2	Hitch A	ngle Controller using Hitch Angle Feedback	
	for Yaw	Rejection Control	81
	5.2.1	Kinematic Hitch Angle Calculation	82
	5.2.2	Yaw Moment Controller based on the Hitch	
		Angle and Yaw Rate Feedbacks.	84
5.3	Optimis	ation of Controller Parameters using	
	GSA Al	lgorithm	85
	5.3.1	Gravitational Search Algorithm	85
	5.3.2	Optimisation Procedures	90
5.4	Compar	rison between Passive, Active and Optimisation	
	Results	and Discussions	91
5.5	Summar	ry	102
IMP	LEMEN'	TATION AND VALIDATION OF THE	
CON	TROLL	ER IN HARDWARE-IN-THE-LOOP	
SIM	ULATIO	IN ENVIRONMENT	103

	6.1	Introduction	103
	6.2	Implementation of Controller on Hardware-in-the-loop	
		Simulation	104
	6.3	Experimental Setup on Hardware-in-the-loop	
		Simulation	105
		6.3.1 Procedure of Hardware-in-the-loop Simulation	106
	6.4	Result and Discussion on Hardware-in-the-loop	
		Simulation	107
	6.5	Summary	116
7	DISC	CUSSION AND CONCLUSIONS	118
	7.1	Conclusions	118
	7.2	Research Contributions	120
	7.3	Recommendations for Future Works	121
8	REF	ERENCES	123
9	APP	ENDICES	143
10	BIOI	DATA OF STUDENT	148
11	LIST	COF PUBLICATION	151

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 3.1 Parameters for Pacejka Tyre M	/lodel [64]	51
Table 3.2 RMS percentage of difference	on single lane change.	52
Table 3.3 RMS percentage of error on d	ouble lane change	54
Table 3.4 Parameters for Truck model		56
Table 3.5 Simulation parameter of traile	r model	57
Table 3.6 Root mean square of double la	ane change with 60 km/h	58
Table 3.7 Root mean square of single la	ne change with 60 km/h	61
Table 3.8 Root mean square of double la	ane change with 80 km/h.	63
Table 3.9 Root mean square of single la	ne change with 80 km/h	66
Table 4.1 RMS analysis for desired and actuator	actual responses of steerable wheel	77
Table 5.1 The RMS percentage error on Active and Optimise resp	single lane change between Passive, onses.	92
Table 5.2 The RMS percentage error on Active and Optimise resp	double lane change between Passive, onses	97
Table 6.1 The percentage of difference erresponse on double lane of	tween simulation and HIL simulation change condition	108

LIST OF FIGURES

FIGURE NO. TITLE	£	PAGE
Figure 1.1 Type of commercial combination ve	hicle [1]	2
Figure 1.2 Pitman arm steering system [3]		3
Figure 1.3 Single-trailer truck classification dire	ection [4]	4
Figure 1.4 Research flow and methodology		13
Figure 1.5 Methodology flow		14
Figure 2.1 Geometric modelling system applied	l on single-trailer truck [35]	19
Figure 2.2 Illustration of free body diagram of coordinates [45]	single-trailer truck on global	20
Figure 2.3 Half vehicle kinematic model known	1 as bicycle model [41]	22
Figure 2.4 Dynamic model for (a) truck and (b)	trailer vehicle	23
Figure 2.5 Half (bicycle) dynamic model [52]		25
Figure 2.6 Peak-to-peak method		34
Figure 3.1 Single-trailer truck model with 15 de	egree of freedom	38
Figure 3.2 Schematic structure for single-trailer	truck model.	39
Figure 3.3 Handling model for truck vehicle		41

Figure 3.4 Three DOF of trailer handling model	43
Figure 3.5 Single-trailer truck model with 15 degree of freedom	46
Figure 3.6 Lateral force response of hitch model in single lane change with 60 km/h	52
Figure 3.7 Hitch angle response of hitch model in single lane change with 60 km/h	53
Figure 3.8 Lateral force response of hitch model in single lane change with 80 km/h	53
Figure 3.9 Hitch angle response of hitch model in single lane change with 80 km/h	53
Figure 3.10 Lateral force response in double lane change with 60 km/h	54
Figure 3.11 Hitch angle response in double lane change with 60 km/h	55
Figure 3.12 Lateral force response in double lane change with 80km/h	55
Figure 3.13 Hitch angle response in double lane change with 80km/h	55
Figure 3.14 Lateral acceleration for truck vehicle in double lane change with 60 km/h	59
Figure 3.15 Lateral acceleration for trailer vehicle in double lane change with 60 km/h	59
Figure 3.16 Yaw rate for truck vehicle in double lane change with 60 km/h	60
Figure 3.17 Yaw rate for trailer vehicle in double lane change with 60 km/h	60

Figure 3.18 Lateral acceleration for truck vehicle in single lane change with 60 km/h	61
Figure 3.19 Lateral acceleration for trailer vehicle in single lane change with 60 km/h	62
Figure 3.20 Yaw rate for truck vehicle in single lane change with 60 km/h	62
Figure 3.21 Yaw rate for trailer vehicle in single lane change with 60 km/h	62
Figure 3.22 Lateral acceleration for truck vehicle in double lane change with 80 km/h	64
Figure 3.23 Lateral acceleration for trailer vehicle in double lane change with 80 km/h	64
Figure 3.24 Yaw rate for truck vehicle in double lane change with 80 km/h	64
Figure 3.25 Yaw rate for trailer vehicle in double lane change with 80 km/h	65
Figure 3.26 Lateral acceleration for truck vehicle in single lane change with 80 km/h	66
Figure 3.27 Lateral acceleration for trailer vehicle in single lane change with 80 km/h	67
Figure 3.28 Yaw rate for truck vehicle in single lane change with 80 km/h	67
Figure 3.29 Yaw rate for trailer vehicle in single lane change with 80 km/h	67
Figure 4.1 Active front steering using pitman steering [130]	70
Figure 4.2 Step steer test with 180 degree steering wheel responses	71
Figure 4.3 The verification of the steering model on Simulink	74

Figure 4.4 Step steer test with 90 degree steering wheel input				
Figure 4.5 Step steer test with 180 degree steering wheel input	75			
Figure 4.6 Schematic structure for inner loop controller system of steerable wheel actuator	75			
Figure 4.7 Small scale of pitman arm actuator	76			
Figure 4.8 Wheel angle output response after 180 deg step steering wheel input	78			
Figure 4.9 Wheel angle output response after 90 deg step steering wheel input	78			
Figure 5.1 Single-trailer truck with steerable wheel at middle axle	81			
Figure 5.2 Schematic structure of hitch angle controller as outer loop controller.	82			
Figure 5.3 Flowchart of the GSA algorithm [143]	90			
Figure 5.4 Lateral acceleration responses on truck model at (a) 60 km/h and (b) 80 km/h for SLC.	93			
Figure 5.5 Lateral acceleration responses on trailer model at (a) 60 km/h and (b) 80 km/h for SLC	94			
Figure 5.6 Yaw rate responses on truck model at (a) 60 km/h and (b) 80 km/h for SLC	95			
Figure 5.7 Yaw rate responses on trailer model at (a) 60 km/h and (b) 80 km/h for SLC	96			

Figure 5.8 Lateral acceleration responses on truck model at (a) 60 km/h and (b) 80 km/h for DLC.				
Figure 5.9 Lateral acceleration responses on trailer model at (a) 60 km/h and (b) 80 km/h for DLC.				
Figure 5.10: Yaw rate responses on truck model at (a) 60 km/h and (b) 80 km/h for DLC.	100			
Figure 5.11 Yaw rate responses on trailer model at (a) 60 km/h and (b) 80 km/h for DLC.	101			
Figure 6.1 The application used in experiment of Hardware-in-the-loop simulation	104			
Figure 6.2 Detail setup for HILs experiment illustrating both software and hardware configuration	106			
Figure 6.3 The complete control structure with PID control	107			
Figure 6.4 Lateral acceleration for truck vehicle in double lane change with 60 km/h	109			
Figure 6.5 Yaw rate response for truck vehicle in double lane change with 60 km/h	109			
 Figure 6.5 Yaw rate response for truck vehicle in double lane change with 60 km/h Figure 6.6 Lateral acceleration for trailer vehicle in double lane change with 60 km/h 	109 109			
 Figure 6.5 Yaw rate response for truck vehicle in double lane change with 60 km/h Figure 6.6 Lateral acceleration for trailer vehicle in double lane change with 60 km/h Figure 6.7 Yaw rate response for trailer vehicle in double lane change with 60 km/h 	109 109 110			

Figure 6.9 Yaw rate response for truck vehicle in double lane change with 80 km/h	110
Figure 6.10 Lateral acceleration response for trailer vehicle in double lane change with 80 km/h	111
Figure 6.11 Yaw rate response for trailer vehicle in double lane change with 80 km/h	111
Figure 6.12 Lateral acceleration response for truck vehicle in single lane change with 60 km/h	113
Figure 6.13 Lateral acceleration response for trailer vehicle in single lane change with 60 km/h	113
Figure 6.14 Yaw rate response for truck vehicle in single lane change with 60 km/h	114
Figure 6.15 Yaw rate response for trailer vehicle in single lane change with 60 km/h	114
Figure 6.16 Lateral acceleration response for truck vehicle in single lane change with 80 km/h	114
Figure 6.17 Yaw rate response for truck vehicle in single lane change with 80 km/h	115
Figure 6.18 Lateral acceleration response for trailer vehicle in single lane change with 80 km/h	115
Figure 6.19 Yaw rate response for trailer vehicle in single lane change with 80 km/h	115

LIST OF ABBREVIATIONS

4WS	-	Four-wheel-steering
ABS	-	Antilock Bracking System
AHV	-	Articulated Heavy Vehicle
DLC	-	Double Lane Change
DOF	-	Degree Of Freedom
DYC	-	Direct Yaw Control
ESC	-	Electronic Stability Control
GSA	-	Gravitational Search Algorithm
HIL simulation	-	Hardware In the Loop simulation
ICR	-	Instantaneous Centre of Rotation
ODE	-	Ordinary Difference Equation
RMS	-	Root Mean Square
RSC	-	Roll Stability Control
SISO	-	Single Input Single Output
SLC	-	Single Lane Change
SUVs	-	Sport Utility Vehicle
TV	-	Torque Vectoring
COG	-	Centre of Gravity

CHAPTER 1

INTRODUCTION

1.1 Research Overview

This research focuses on developing yaw rejection control to minimise the unwanted yaw motion of the single-trailer truck while cornering condition. The yaw rejection controller is an active system that controls steerable wheel at the middle axle of the single-trailer truck to minimise unwanted yaw motion during manoeuvring. This chapter will describe the background of this research.

1.1.1 Background on Heavy Vehicle

The single-trailer truck vehicle which also known as lorry, is described as any motor vehicle that is designed to carry freight or goods or to perform special services. A semi-trailer truck is the combination of truck and semi-trailer unit. There are several types of commercial combination vehicle such as single-trailer truck, truck trailer and double-trailer truck. Figure 1.1 shows the types of commercial combination vehicle.

Figure 1.1 Type of commercial combination vehicle [1]

In general, the single trailer truck vehicle is always loaded for long distance transport. This heavy vehicle has the ability to transport an extensive and heavy load with flexible delivery cost. An easy loading and unloading process caused this heavy vehicle to be the best choice of trade transportation. Nowadays, the heavy truck commercial has been used as one of the major cargo transportation systems worldwide [2]. This vehicle can be attached with specialised equipment such as fire trucks, refuse trucks, suction excavators and concrete mixer.

In this study, the stability of a single-trailer truck with three axles in high speed manoeuvring is analysed. In this vehicle, the steering system at the front wheel is being controlled by the driver to provide the overall direction of the vehicle. Therefore, steering system plays an important part in vehicle handling characteristics. A steering arm is attached at one side to the steering box via the sector shaft at the bottom of the steering wheel which converts the angular motion of the sector shaft into linear motion to steer the wheel. The most common steering arm used in heavy vehicle is the Pitman arm steering system. It is a part of an older recirculating ball steering system that is still used primarily in some trucks and SUVs [3]. Figure 1.2 shows the Pitman arm system that is commonly used in a heavy vehicle.

Figure 1.2 Pitman arm steering system [3]

1.1.2 Background on Yaw Rejection Controller Development for Single-trailer truck Vehicles

The single-trailer truck model has three degrees of freedom which are pitch, roll and yaw direction as illustrated in Figure 1.3. In this study, yaw motion is concerned for maintaining the stability of single-trailer truck while manoeuvring. Yaw motion of the vehicle can be described as the rotation of the vehicle body about the zaxis usually caused by yaw moment. Rotational angle about z-axis caused by this motion is known as yaw angle. Yaw motion usually occurred due to yaw moments caused by steering manoeuvrings as well as external yaw moments caused by any external lateral force that acts away from the centre of rotation (COG).

Figure 1.3 Single-trailer truck classification direction [4]

However, many single-trailer truck vehicles were involved in tragic accidents and most cases were implicating the truck driver's safety. Unfortunately, this type of heavy vehicle is exposed to risks that can lead to blind spot crashes, loss of control accidents, and fatigue on longer trips [4,5]. Based on previous studies, accidents involving heavy vehicle in Malaysia were reported as much as 30.3% [6]. Unlike passenger car crashes, single-trailer truck have high fatality and injury rates, that lead to excess property damage and traffic congestion [7]. Manoeuvring a single-trailer truck is much harder compared to a single-unit vehicle as the truck's driver has an additional work on coping with trailer oscillation, path following to the vehicle and possible instability. Also, poor lateral stability of single-trailer truck at high speed can be attributed to unstable motions during changing lanes, such as trailer swing, jackknifing and rollover causing more traffic accidents [8,9].