PERFORMANCE AND LIFE CYCLE COST ANALYSIS (LCCA) FOR HEAT RESISTANT WALL

UMI NADIAH BTE NOR ALI

MASTER OF SCIENCE (CIVIL ENGINEERING) UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2018

PERFORMANCE AND LIFE CYCLE COST ANALYSIS (LCCA) FOR HEAT RESISTANT WALL

UMI NADIAH BTE NOR ALI

Thesis submitted to Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfillment of the requirements for Degree of Master Science (Civil Engineering)

July 2018

ABSTRACT

The main aim of this study to seek a passive cooling method that can minimize the use of air conditioning system while saving energy consumption. There have three objective in this study. The first objectives is to find out the optimum way in enhancement of green building technology with getting opinions and suggestions from the Green Building Index professional staff. Enforcement and full support by the Malaysian Government identified to give a significant role in achieving the first objective. The second objective is to develop and evaluate an affordable heat resistant wall panel system to improve energy efficiency. Different types of wall panel concept and design were constructed and tested to compare the best performance in thermal resistance. In this study, the Heat Resistant Wall Panel with flowing water shows the best performance in reducing the building's indoor temperature during the simulation. A significant temperature drop was found in this wall panel type: reached 6°C at the extreme temperature (35°C). In order to determine the energy efficiency and cost saving, the Life Cycle Cost Analysis (LCCA) was performed as to complete the third objective. As a result, the Heat Resistant Wall Panel with flowing water inside was discovered as the most suitable solution in reducing indoor temperature and as a way to save energy with the payback value occurred at 9th years later. Furthermore, about 30.6% cost reduced by using the Heat Resistant Wall Panel with flowing water in term of annual maintenance and services cost.

ABSTRAK

Matlamat utama dalam kajian ini bertujuan untuk mencari kaedah penyejukan pasif yang dapat mengurangkan kebergantungan terhadap penggunaan sistem penghawa dingin sekaligus menjimatkan kos penggunaan tenaga elektrik. Terdapat tiga objektif dalam kajian ini. Objektif pertama adalah untuk mengetahui cara paling optimum dalam meningkatkan teknologi bangunan hijau dengan mendapatkan cadangan dan idea daripada kakitangan profesional Indeks Bangunan Hijau (GBI). Penguatkuasaan dan sokongan penuh dari pihak kerajaan Malaysia dikenal pasti untuk memberi peranan penting dalam mencapai objektif pertama. Objektif kedua ialah untuk membangun dan menilai sistem panel dinding tahan panas yang berpatutan untuk meningkatkan kecekapan tenaga. Konsep dan rekabentuk panel dinding yang berbeza dibina dan diuji untuk membandingkan tahap prestasi terbaik dalam rintangan haba. Dalam kajian ini, panel dinding tahan haba dengan air mengalir di dalamnya telah menunjukkan prestasi yang terbaik dalam mengurangkan suhu dalaman bangunan semasa simulasi. Penurunan suhu maksimum yang telah dicapai oleh panel dinding tahan haba dengan sistem air yang mengalir adalah sebanyak 6°C ketika suhu ekstrem iaitu 35°C. Analisa kos kitaran hayat diaplikasikan dalam kajian ini untuk menentukan kadar pulangan balik terhadap pelaburan yang telah dibuat semasa kerja awalan projek yang di mana ianya merupakan objektif ketiga. Jumlah pulangan balik berlaku pada tahun ke-9 dengan anggaran penjimatan kos sebanyak 30.6% dengan menggunakan Panel Dinding Tahan Haba dengan sistem air yang mengalir di dalamnya.

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude and praises to the Almighty for His blessings throughout my research for making it possible to be completed successfully. Not to be forgotten, I also would like to thank my research supervisor, Kol. Prof. Ir. Dr. Norazman Bin Mohamad Nor for his valuable advice, motivation, and encouragement throughout completing my study. It was a great honor and privilege to work and study under his leadership. I am extremely thankful to him for choosing me to become one of his students and for what he has offered. I would like to express my sincere gratitude to Centre of Research and Innovation for granting me monthly allowance funds in the form of Graduate Research Fellowship that supports the research project work and presentation at a conference. I gratefully acknowledge Dr. Maidiana binti Othman as my co-supervisor during my Master programme, with her patience in guiding and improving my writing skills. Many thanks also to Dr Leong Kin Yuen from the Mechanical Engineering Department in guiding me to complete my research study regarding the thermal resistance basic theory. I would like to express my thanks to Civil Engineering Department of National Defence University of Malaysia for lending me the equipment during my field experiment. Many thanks to the technicians and lecturers from Civil Engineering Department for their assistance in a fraction of the research experiment. Last but not least, I would like to thank my husband and family for their love, patience, support, and encouragement along the journey.

APPROVAL

The Examination Committee has met on **28 September 2018** to conduct the final examination of **Umi Nadiah Bte Nor Ali** on her degree thesis entitled **'Performance and Life Cycle Cost Analysis (LCCA) for Heat Resistant Wall'**

The committee recommends that the student be awarded the Master of Science (Civil Engineering)

Members of the Examination Committee were as follows.

Megat Mohamad Hamdan bin Megat Ahmad, PhD

Prof. Dr. Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Mohammed Alias bin Yusof, PhD

Assoc. Prof. Ir. Faculty of Civil Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Abdul Karim bin Mirasa, PhD

Prof. Ir. Dr. Faculty of Engineering Universiti Malaysia Sabah (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science (Civil Engineering)**. The members of the Supervisory Committee were as follows.

Norazman Bin Mohamad Nor, PhD

Col. Prof. Ir. Dr. Faculty of Civil Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Maidiana Binti Othman, PhD

Dr. Faculty of Civil Engineering Universiti Pertahanan Nasional Malaysia (Co-supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	: UMI NADIAH BTE NOR ALI
Date of birth	: 19 DECEMBER 1989
Title	: PERFORMANCE AND LIFE CYCLE COST ANALYSIS (LCCA) FOR HEAT RESISTANT WALL
Academic session	: 2016/2017

I declare that this thesis is classified as:

CONFIDENTIAI	C (Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follow

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

Signature of Main Supervisor

891219-01-5752

Kol. Prof. Ir. Dr. Norazman Bin Mohamad Nor

Name of Main Supervisor

Ic/Passport No. of Student

Date:

Date:

Note: *If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation stating the period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGMENTS	iv
APPROVAL	V
DECLARATION	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF EQUATIONS	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER

INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	6
1.3 Objectives	11
1.4 Scope of Study	11
1.5 Significant of Research	12
1.6 Thesis Organisation	13
LITERATURE REVIEW	14
2.1 Introduction	14
2.2 Heat Transfer and Thermal Mass	15
2.2.1 Conduction Heat Transfer	16
2.2.2 Convection Heat Transfer	17
2.2.3 Thermal Resistance Concept	18
2.3 Panel Heating and Cooling	19
2.3.1 Thermal Radiation Principles	19
2.3.2 Heat Losses and Gains	20
2.3.3 Concept of Passive Radiative Cooling	22
2.4 Radiant Cooling System	25
2.4.1 Concept of Radiant Panel Cooling System in	27
Building	
2.5 Thermal Active Building Systems (TABS)	30
2.6 Lightweight Concrete	31
2.7 Heat and Moisture Consideration of Cooling and	32
Heating Panel Systems	
2.8 Characteristic of Copper, PEX and PVC pipes	33
2.9 Life Cycle Cost Analysis (LCCA)	34
2.10 Summary	36
	 1.1 Background 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Study 1.5 Significant of Research 1.6 Thesis Organisation LITERATURE REVIEW 2.1 Introduction 2.2 Heat Transfer and Thermal Mass 2.2.1 Conduction Heat Transfer 2.2.2 Convection Heat Transfer 2.2.3 Thermal Resistance Concept 2.3 Panel Heating and Cooling 2.3.1 Thermal Radiation Principles 2.3.2 Heat Losses and Gains 2.3.3 Concept of Passive Radiative Cooling 2.4 Radiant Cooling System 2.4.1 Concept of Radiant Panel Cooling System in Building 2.5 Thermal Active Building Systems (TABS) 2.6 Lightweight Concrete 2.7 Heat and Moisture Consideration of Cooling and Heating Panel Systems 2.8 Characteristic of Copper, PEX and PVC pipes 2.9 Life Cycle Cost Analysis (LCCA)

3		THODOLOGY	38
		Introduction	38
	3.2	Research Design	39
	3.3	Initial Concept of Research Method	39
		3.3.1 Qualitative Research	40
		3.3.2 Quantitative Research	40
	3.4	Project Flowchart	41
	3.5	Instrument for Data Collection	44
		3.5.1 Qualitative Research	44
		3.5.2 Quantitative Research	45
		3.5.2.1 Infrared Thermometer	45
		3.5.2.2 Digital Thermometer	46
		3.5.2.3 Heating Element	47
		3.5.2.4 Water Pump	48
		3.5.2.5 Automatic Pump Controller	49
		3.5.2.6 Water Storage Tank	50
		3.5.2.7 Hygrometer	50
		3.5.2.8 Solar Meter	51
	3.6	List of Materials for Experimental Work	53
		3.6.1 Polyvinyl Chloride (PVC)	53
		3.6.1.1 Compressive Strength Test	55
		3.6.1.2 Tensile Strength Test	57
		3.6.1.3 Flexural Strength Test	59
		3.6.2 Expanded Polystyrene Beads (EPS)	62
		3.6.3 Superplasticizer	63
		3.6.4 Fine Aggregate	63
		3.6.5 Coarse Aggregate	64
		3.6.6 Water	64
		3.6.7 Expanded Metal Wire Mesh	65
		3.6.8 Perlite	66
		3.6.9 Cement	67
	3.7	Experimental Work	68
		3.7.1 Concrete Mix Design	69
		3.7.2 Design Stage and Concept of Heat Resistant	69
		3.7.2.1 Plain Concrete Wall Panel (Type 1)	70
		3.7.2.2 Heat Resistant Wall Panel with Vertical	72
		Pipe Arrangement (Type 2)	
		3.7.2.3 Heat Resistant Wall Panel with	73
		Transverse Pipe Arrangement (Type 3)	
		3.7.2.4 Interlocking Brick Wall Panel (Type 4)	73
		3.7.2.5 Bamboocrete Wall Panel (Type 5)	75
		3.7.3 Thermal Performance Test	76
		3.7.4 Water Reticulation System in Heat Resistant	80
		Wall Panel	
	3.8	Axial Load Test on Wall Panel	83
`	3.9	Life Cycle Cost (LCC)	84
		3.9.1 Introduction	84
		3.9.2 Life Cycle Cost Analysis (LCCA)	85
	3.10	Energy Consumption and CO ₂ emissions	87
		Summary	87

4	RES	SULTS & DISCUSSIONS	88
	4.1	Introduction	88
	4.2	Qualitative Interpretation of Results	88
		4.2.1 Discussion of Qualitative Approach	89
	4.3	Quantitative Interpretation of Results	90
		4.3.1 Lightweight Concrete Mixture	90
		4.3.2 Thermal Performance	93
		4.3.3 Thermal Resistance of Various Wall Panel Types	110
	4.4	Wall Panel Strength	116
	4.5	Energy Consumption and Released Amount of CO ₂	118
	4.6	Life Cycle Cost Analysis (LCCA)	119
	4.7	Summary	122
5	CO	NCLUSIONS	124
	5.1	Introduction	124
	5.2	Conclusion	124
	5.3	Recommendations	127
RE	FEREN	CES	128
	PENDI		
		v Sheets	124
		Resistance Calculation of Wall Panel	140
		wn Rate Calculation for HRWP: Type A	146
		Quantity	147
		le Cost of Typical Building with Air Conditioning System	153
		le Cost of Typical Building with HRWP: Type A System	154
G: I	Recorde	d Temperature by FLUKE Infrared Thermometer	155
BIC)DATA	OF STUDENT	156
LIS	T OF P	UBLICATIONS	157

LIST OF TABLES

Table No.	Title	Page
2.1	Life expectancy comparison of pipes	33
3.1	Pc-59 automatic pump control specification	49
3.2	TENMARS solar meter specifications	52
3.3	Dimension for specimen in class type IV	58
3.4	Typical physical properties of perlite	67
3.5	Specifications of existing building wall	70
4.1	Compressive strength and concrete mixture proportion	91
	among previous study (metahwee, 2013) and current	
	experiment of concrete mixture in this research	
4.2	The comparison results in term of concrete density and	92
	compressive strength between the previous research paper	
	by (metahwee, 2013) with current experimental results	
4.3	Recorded weather by Jabatan Meteorologi Malaysia on 2017	94
4.4	Recorded weather by Jabatan Meteorologi Malaysia on 2018	95
4.5	Recorded wall surface temperature using different type of	109
	thermometer	
4.6	Thermal conductivity value, k (W/mK)	112
4.7	Summary of heat transfer, Q (W/m ²) according temperature	113
	difference (ΔT) and thermal resistance value, R (W/K)	
4.8	Summary of Life Cycle Costs (LCC) for two different types of	121
	Building systems	

LIST OF FIGURES

Figure No.	Title	Page
1.1	Green Building Index (GBI) allocation chart of residential and non-residential building	4
1.2	Green Building Index (GBI) classification by GBI rating tools	5
1.3	Greenhouse emission gasses from human activities in United	7
	Kingdom	
1.4	Malaysian Air Pollution Emission of 2007-2008	7
1.5	Sources of Carbon Dioxide (CO ₂) emissions in Malaysia	8
1.6	Energy labelling on any product or electric appliances	10
2.1	Types of installation panel heating and cooling for ceilings	21
2.2	Types of pipe embedded in floor	22
2.3	Cross section of radiator flat panel	24
2.4	Illustration of radiative cooling experimental set-up	25
2.5	Types of pipe embedded based on ISO 11855-2	29
2.6	Installation of embedded pipe for TABS in the center	31
	concrete core of a building structure	
2.7	Life Cycle Cost Analysis (LCCA)	36
3.1	Project flowchart	43
3.2	Fluke infrared thermometer series TiS65	46
3.3	Digital thermometer 2103	47
3.4	400w Philips high-pressure sodium lamp	48
3.5	TPS-60 water pump with 0.5 horse power	48
3.6	Pc-59 automatic pump control	49
3.7	Gallons high-density polyethylene (HDPE) water storage tank	50
3.8	Hygrometer	51
3.9	TENMARS solar meter model TM-750	52
3.10	Types of PVC pipe orientation	54
3.11	Specimen for compression test	56
3.12	Compressive strength test equipment	56
	(universal INSTRON machine)	

3.13	"Dog bone" specimen dimension	57
3.14	Dog bone shape of PVC pipe	58
3.15	Tensile strength test on Polyvinyl Chloride (PVC) dog	59
	bone shape specimen (ASTM D638)	
3.16	Flexural strength test diagram on INSTRON machine plate	60
	(ASTM D790)	
3.17	Isometric view of pipe orientation Type 2 with labelling	61
3.18	Isometric view of pipe orientation Type 3 with labelling	62
3.19	Expanded wire mesh (Exmet)	65
3.20	Perlite	66
3.21	Plain concrete wall panel – Control (Type 1)	71
3.22	Heat resistant wall panel with vertical pipe arrangement	72
	(Type 2)	
3.23	Heat resistant wall panel with transverse pipe arrangement	73
	(Type 3)	
3.24	Laying process of interlocking bricks	74
3.25	Casting process of bamboocrete panel	76
3.26	Experimental set up	77
3.27	Thermal value of bamboocrete wall panel on both surfaces	78
	by using fluke infrared thermometer	
3.28	Marked points on both wall panel surfaces	79
3.29	Thermal observation by a digital thermometer 2103	80
	(ELE International) on wall panel surfaces	
3.30	Option 1-fully dependency on rainwater harvesting	81
3.31	Option 2-fully dependency on rainwater harvesting	82
	with filtering system	
3.32	Option 3-fully dependency on direct water sources	82
3.33	General set up at axial load test on wall panel	84
3.34	A building plan of bedroom 2 for bill of quantity (BQ)	86
4.1	Temperature difference between external and internal	96
	wall surface of control wall panel	
4.2	Temperature difference between external and internal	97
	wall surface of HRWP Vertical (Water Flowing)	

4.3	Temperature difference between external and internal	98
	wall surface of HRWP Vertical (Water Static)	
4.4	Temperature difference between external and internal	99
	wall surface of HRWP Vertical (No Water)	
4.5	Temperature difference between external and internal	100
	wall surface of HRWP Transverse (Water Flowing)	
4.6	Temperature difference between external and internal	101
	wall surface of HRWP Transverse (Water Static)	
4.7	Temperature difference between external and internal	102
	wall surface of HRWP Transverse (No Water)	
4.8	Temperature difference between external and internal	103
	wall surface of interlocking brick wall panel	
4.9	Temperature difference between external and internal	104
	wall surface of 10m NDUM shooting range building	
	wall (existing building)	
4.10	Temperature difference between external and internal	105
	wall surface of bamboocrete wall panel	
4.11	Graphical Presentation of Thermal Resistance, (R) Performance	115
4.12	Axial load test. Load-deflection plotted graph	117
4.11	wall surface of bamboocrete wall panel Graphical Presentation of Thermal Resistance, (R) Performance	

LIST OF EQUATIONS

Equation No.	Title	Page
2.1	Conduction Heat Transfer, Q (W)	16
2.2	Convection Heat Transfer, Q (W)	17
2.3	Heat Conduction of thermal resistance, Q (W)	18
2.4	Thermal Resistance against wall conduction, R (K/W)	18
2.5	Water Loads, Q (W)	30
3.1	Q solar energy	53
3.2	Compressive strength	55
3.3	Tensile strength	59
3.4	Flexural strength	60
4.1	Conduction Heat Transfer, Q (W)	111
4.2	Thermal Resistance, R (K/W)	111

LIST OF ABBREVIATIONS

ACEM	Association of Consulting Engineers Malaysia
ASTM	American Society for Testing and Materials
CFCs	Chlorofluorocarbons
CO_2	Carbon Dioxide
EN	European Standard
EPS	Expanded Polystyrene Bead
EXMET	Expanded Metal Wire Mesh
GBI	Green Building Index
HCFCs	Hydro Chlorofluorocarbons
HRWP	Heat Resistant Wall Panel
HVAC	Heating, Ventilation and Air-Conditioning
ISO	International Standards Organization
KeTTHA	Kementerian Tenaga, Teknologi Hijau dan Air
LCCA	Life Cycle Cost Analysis
LEED	Leadership in Energy and Environmental Design
NDUM	National Defence University of Malaysia
PAM	Pertubuhan Arkitek Malaysia
PEX	Cross-linked Polyethylene
PVC	Polyvinyl Chloride
RMK	Rancangan Malaysia Ke-
ROI	Return On Investment
TABS	Thermal Active Building System
VAV	Variable Air Volume

CHAPTER 1

INTRODUCTION

1.1 Background

Green building technology became a common research for the last few decades. These themes identified the definition of the advantages related to green building compared to conventional building. Malaysia is located at the tropical climate regime in South-East Asia. 25°C (77 °F) to 35°C (95 °F) is the average range temperature throughout the year stated in weather website (Jabatan Meteorologi Malaysia, 2017). Malaysia's climate is also categorised as equatorial with hot and humid weather throughout the year. It is because of the hazy warm air trapped inside the cities that causes the areas to feel hot. In tropical country like Malaysia, rainy season occurs between mid-October and end of March (Northeast Monsoon season) while the month's rest is windy and sunny (Southeast Monsoon season). Malaysia is no exception to El Nino's effects where this phenomenon occurs at irregular intervals of two to seven years and lasts for as long as half a year to two years. El Nino happens when the temperature of the sea surface in eastern Pacific Ocean becomes warmer. The temperature during El Nino season affects people's comfort as it decreases rainfall in the dry season and becomes hotter. Nowadays, the earth is getting old and it gets

hot rapidly compared to years before. As this problem arises, people take the opportunity to promote and sell air conditioning system that can give comfort to people. Furthermore, from 1.5 million, air conditioner users are expected to increase by 2020 (Damiati, 2016). The cooler system gives the best solution to cool up building area, but the system needs high voltage of electricity to be generated and consumers must pay more for electricity bills. High electricity bill causes burden to consumers especially those with low monthly income. Cooler system produces greenhouse gasses that affect the atmosphere, plus the increase of these gasses will trap more heat thus making this earth hotter. Greenhouses gasses cause global warming and climate change. Urban areas loaded with population, industry, and factories are the most exposed areas with carbon dioxide emissions. Thus, the air conditioner systems are demanded in urban areas due to its increased weather condition compared to rural areas (Shahbaz et. al, 2016).

Climate change in Malaysia became the main issue that must be discussed and resolved. "Brown growth" that happened in the last fifty years in Malaysia is replaced by the era of "green growth" which will help to sustain the quality of Malaysia citizens' lives. One of the main barriers to develop the green building is the old mindset that only thinks about high investment for green technology compared to conventional technology. New mindset needs to be injected among citizens that natural resources cannot be consumed continuously. Early investment in green buildings gets better return of investment (ROI) for long term savings. United State Green Building Council (USGBC) stated projects that achieved LEED rating normally get the return of 20% or more (Bard, 2010). Development of sustainable buildings is more complicated than conventional buildings in which green building needs more investment and research on resources to construct sustainable buildings. The process of designing and constructing needs involvement from a wide range of professionals. Transferring of knowledge to citizens really gives impact to green building's exposure as it makes project team run their construction activities more effectively (Qian et al., 2015).

Green building is one of the outcomes from the concept of sustainable design. Since the energy conservation and green building techniques are becoming mainstream practices for market-rate projects, intentions in gaining the knowledge of buildings' efficiency are welcome. Furthermore, it is to reduce building impacts on human health and the environment over the entire life cycle of the building. In the present development for our communities, it has a large impact on the natural environment as it disturbs the population and nature. Many benefits resulted from the enhancement in green building technology, which related to the scope of environment, economy and social. Among the benefits are effective solid waste management, reduction of the operating costs, i.e. the energy and water consumption, and enhancement of occupant's health and comfort. The Green Building Index (GBI) of Malaysia was developed in 2009 by Pertubuhan Arkitek Malaysia (PAM) and the Association of Consulting Engineers Malaysia (ACEM) to lead the Malaysian property industry towards becoming environmental friendly in future development and construction. The objectives of this project were to share the best way in enhancement of green building technology, to minimise energy consumption and to pursue green growth for sustainability and to improve the effectiveness of the design and construction technology in achieving sustainable green building. There are six (6) Green Building Index (GBI) assessment criteria for new construction; (1) Energy Efficiency, (2) Indoor Environmental Quality, (3) Sustainable Site Planning & Management, (4)

Material & Resources, (5) Water Efficiency, and (6) Innovation. Energy efficiency gives the maximum points in assessment criteria score with 35 points for non-residential and 23 points for residential which is quite high in term of green building requirements (GBI, 2009).

Green Building Index (GBI) also has four (4) rating classifications which are platinum, gold, silver, and certified. Figure 1.1 represents the Green Building Index (GBI) point's allocation chart while Figure 1.2 shows green building index classification.

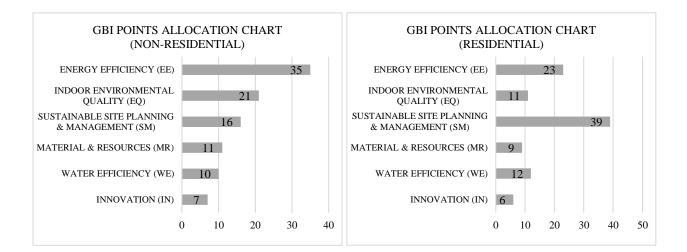


Figure 1.1 Green Building Index (GBI) allocation chart of residential and nonresidential building (GBI, 2009).

POINTS	GBI RATING
86 + points	Platinum
76 to 85 points	Gold
66 to 75 points	Silver
50 to 65 points	Certified

Figure 1.2 Green Building Index (GBI) classification by GBI rating tools (Green Building Index, 2009).

Furthermore, this contribution focused on enhancing green growth for sustainability and resilience in RMK-11. Goals in achieving green building were determined to enhance the development of green building technology. Go green is a strategy as the need and desire to be more energy efficient and environmental friendly. The cost of building materials and the management of the construction give contributions towards affordable building price with the incorporation of green building features.

1.2 Problem Statement

Hot and humid weather in Malaysia caused the increase in energy consumption due to the usage of mechanical system for thermal comfort. Usually, it is very hot and humid especially in the cities due to the urban lifestyle. Roof and wall surfaces could reach up to 60°C because they are more exposed to direct sunlight (Li, 2005). Air conditioner is required to maintain indoor temperature and give comfortable result to users (Tan, 2013). However, the usage of air conditioner system required high-energy consumption and resulted in high electricity bill. This planet is under serious threat of global warming, thus immediate actions must to be taken to overcome this matter. The larger contribution of greenhouse emission gasses was identified by carbon dioxide (CO₂) and this can be seen in Figure 1.3 and 1.4. Figure 1.3 represents a number of emissions from people activities in the United Kingdom in which each piece of the pie represents the result of emissions from human activities, while Figure 1.4 represents the amount of air-polluting emission in Malaysia in the year 2007 to 2008. These charts indicated that the largest emissions are from Carbon Dioxide (CO₂). Carbon dioxide in Figure 1.4 was reported by the Malaysian Department of Environment (2010), where the emissions are caused by many sources. Carbon dioxide (CO_2) emissions were found to be increasing in developed countries and one of the sources was from ventilation and air conditioning (HVAC) systems which contributed 60% amount of energy consumption in buildings (Mardiana and Riffat, 2015).

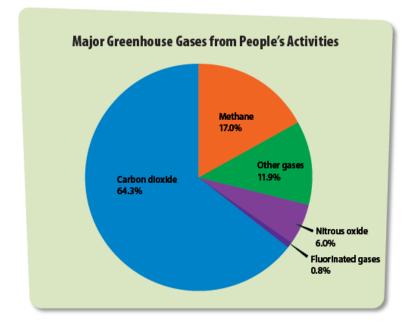


Figure 1.3 Greenhouse emission gasses from human activities in United Kingdom

(IPCC, 2014).

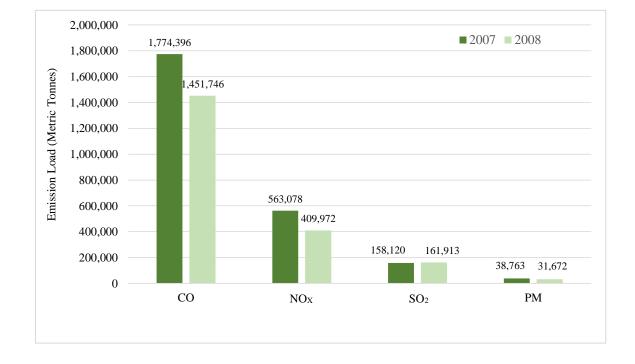


Figure 1.4 Malaysian Air Pollution Emission of 2007-2008

(Shahrul et al., 2013)

Electricity sources are one of the most important resources for humans in their daily routines. Fossil fuels, coal, and gas are the main sources for electrical supply in this earth. In the meantime, the price of fossil fuels is expected to continue to rise. It will burden the nation and the people in terms of economy. Figure 1.5 indicates that energy industries have the highest percentage for sources of carbon dioxide emissions in 2011 (NRE, 2015).

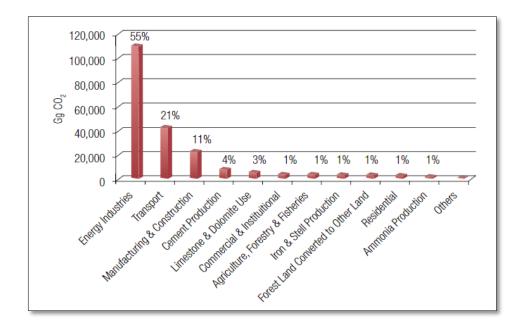


Figure 1.5 Sources of Carbon Dioxide (CO₂) emissions in Malaysia

(NRE, 2015)

The previous Prime Minister of Malaysia, Dato' Sri Haji Mohammad Najib bin Tun Haji Abdul Razak challenged all researchers in Malaysia to find the solution in greener mix of electric supply. Green energy has been called as 'fifth fuel' and become an alternative to the energy greener mix (KETTHA, 2012). Many countries took initiative and commitment on these ecological concerns in order to reduce carbon emission as their targets for the next generations. Sustainability achieved by energy