EFFECTS OF ANNEALING TEMPERATURE ON BISMUTH OXYIODIDE THIN FILM FOR LEAD-FREE PEROVSKITE SOLAR CELLS.

ASYRAF HAKIMI BIN AZMI

MASTER OF SCIENCE (PHYSICS)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2022

EFFECTS OF ANNEALING TEMPERATURE ON BISMUTH OXYIODIDE THIN FILM FOR LEAD-FREE PEROVSKITE SOLAR CELLS.

ASYRAF HAKIMI BIN AZMI

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science (Physics)

ABSTRACT

Perovskite solar cells based on lead (Pb) halide has demonstrated the rapid increased in efficiency and advanced in photovoltaic technology in the last decade, but the toxicity issue impede the large-scale industrial production. Bismuth oxyiodide (BiOI) has been recognized as suitable candidate of less-toxic material to replace Pb in conventional Pb-halide perovskite solar cells (PSCs), without adversely impacting performance in perovskite solar cells. Thin films of BiOI were synthesized and deposited using Successive Ionic Layer Adsorption and Reaction (SILAR) on the glass substrates, the BiOI films were characterized with all these characterizations prior to find the optimum annealing temperature and used it for fabrication of solar cells device and accessed its perfomance. The samples were annealed at various annealing temperature for optimization of the performance which influenced on crystallization, morphology and leads to improving the electrical properties of BiOI films from 250 °C, 350 °C, 450 °C and 550 °C, for 20 minutes. The physical observation, microstructure, thickness, optical, structural, and electrical properties of BiOI thin films were characterized. From the physical observation, the colour of the films changed from the orange-yellow to yellowish with increasing annealing temperature. The microstructure study demonstrated the BiOI thin films have flakes morphology structure. The average thicknesses of BiOI films were in ranged of 3.479 - 8.082 µm with the optical band gap, E_g in range 1.59 to 2.10 eV. From XRD characterization, sample annealed below 350 °C demonstrated single crystalline structure, but with further higher annealing, BiOI film changed to polycrystalline with mixed phases of BiOI. The crystallite size was calculated in range from 27.74 to 29.31 nm. Finally the

BiOI thin films were measured its conversion efficiency using I-V measurement. The sample annealed with 350 °C shows the highest efficiency with 1.67 %. By referring to all the results in this study, we conclude that the optimum annealing temperature for BiOI thin film is 350 °C with 1.67%. This study provided the clue on BiOI thin film properties for active layer in low-toxicity perovskite solar cells.

Keywords:

Bismuth Oxyiodide, SILAR, Thin Film, Lead-free Perovskite Solar Cell, Annealing Temperature.

ABSTRAK

Sel suria perovskit berdasarkan plumbum halida diperlihatkan sebagai satu sel suria yang mempunyai kecekapan yang tinggi dalam teknologi fotovolta dan perkembangan yang singkat sedekad ini. Namun, sel suria perovskit dengan isu toksik plumbum yang tinggi menghalang pengeluaran perindustrian yang berskala besar. Bismuth oxyiodide (BiOI) adalah bahan yang tidak mempunyai plumbum dan kurang bertoksik jika dibandingkan dengan plumbum, telah dikenali sebagai pengganti yang amat selaras untuk mengantikan sel suria perovskit yang berdasarkan plumbum tanpa memberi impak dalam prestasi kecekapan penukaran. Filem nipis BiOI telah disintesis menggunakan teknik penjarapan dan tindak balas lapisan ionik berturutan (SILAR) diatas substrat kaca. Kesemua sampel disepuhlindapan pada beberapa suhu iaitu 250 °C, 350 °C, 450 °C, dan 550 °C selama 20 minit. Kesemua filem BiOI di analisa, seperti pemerhatian fizikal, mikrostruktur, ketebalan, optik, struktur dan sifat elektrik. Daripada pemerhatian fizikal, warna filem nipis berubah daripada jingga kepada kuning dan menjadi lebih kekuningan dengan pertambahan suhu sepuhlindapan. Untuk analisa mikrostruktur pula, imej pancaran medan mikroskop elektron pengimbas (FESEM), menunjukan filem BiOI mempunyai morfologi berbentuk struktur serpihan seperti struktur kepingan bunga yang bersaiz dalam lingkungan 1 μm. Ketebalan filem nipis pula, adalah diantara 3.479 μm sehingga 8.082 μm manakala untuk optik pula, jurang jalur adalah diantara 1.59 ke 2.10 eV. Daripada analisa XRD, sampel yang disepuhlindapan dengan pada suhu 350 °C mempunyai struktur hablur yang tunggal manakala, untuk suhu lebih daripada 450 °C, mempunyai struktur bahan yang polihablur. Saiz hablur adalah diantara 27.747 hingga 29.314 nm. Seterusnya, kecekapan penukaran untuk kesemua filem nipis BiOI dianalisa menggunakan pengukuran arus voltan. Sampel filem nipis BiOI yang disepuhlindapan pada 350 °C menunjukan kecekapan penukaran yang tertinggi dengan 1.67 % berbanding dengan sampel-sampel yang lain. Kesimpulannya, dengan merujuk daripada kesemua bahagian hasil dalam kajian ini, BiOI 350 °C adalah suhu sepuhlindapan yang paling sesuai untuk digunakan dalam fabrikasi sel suria perovskit dan suhu sepuhlindapan yang melebihi 450 °C tidak sesuai dalam kajian ini. Kajian ini juga memberi petunjuk dan maklumat tentang sifat filem nipis BiOI yang telah disepuhlindapan dengan suhu yang sesuai sebagai lapisan aktif untuk fabrikasi sel suria perovskit.

Kata kunci:

Bismuth Oxyiodide, SILAR, Filem Nipis, Sel Suria perovskit tanpa plumbum, Suhu sepuhlindapan.

ACKNOWLEDGEMENTS

All praise to ALLAH the Almighty because without His command, I did not get to finish my master's degree. I do want to offer my heartfelt gratitude to my main supervisor, Dr Nor Azlian binti Abdul Manaf, since she's so important in ensuring my thesis submission and research ongoing very well. I cannot imagine how my research would have progressed without her assistance and guidance. Besides that, I would like to give a special thanks to my co-supervisor, Dr Wan Yusmawati binti Wan Yusoff and Dr Azuraida Binti Amat as they greatly useful to me in terms of improving my research analysis skills and improve my presenting skills.

Besides that, I would like to thank my father Mr. Azmi bin Ajid and my mother Mrs. Wahida binti Ismail for helping me in form of mental and physical to further my study after degree. I also want to give my gratitude to them because giving their blessing to continuing my master's degree. Also my sibling for helping me directly or indirectly during my master degree. Next, all my friends in UPNM Nadia, Hisyam, Falihan and Nasuha support me throughout my research study, discussion about the data and helping me with the PPS and PPPI business. Only ALLAH can repay what they did to me and may they always get blessing from Him.

Lastly, I would like to thank KPT for the FRGS grant to sponsoring my allowance and expense during this two years research study. In Sya Allah will be continuing my PhD next.

APPROVAL

The Examination Committee has met on **Date of Viva Voce** to conduct the final examination of **Asyraf Hakimi Bin Azmi** on his degree thesis entitled **Effects Of Annealing Temperature On Bismuth Oxyiodide Thin Film For Lead-Free Perovskite Solar Cells.**

The committee recommends that the student be awarded the of Master of Science (Physics).

Members of the Examination Committee were as follows.

Prof Madya Ts. Dr. Norhana Binti Abdul Halim

Centre of Foundation Defence Universiti Pertahanan Nasional Malaysia (Chairman)

Dr. Siti Zulaikha Binti Ngah Demon

Centre of Foundation Defence Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Dr. Wan Maisarah Binti Mukhtar

Faculty of science and technology Universiti Sains Islam Malaysia (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science (Physics)**. The members of the Supervisory Committee were as follows.

Dr. Nor Azlian Binti Abdul Manaf Centre of Foundation Defence

Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Dr. Wan Yusmawati Binti Wan Yusoff

Centre of Foundation Defence Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Dr. Azuraida Binti Amat

Centre of Foundation Defence Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Asyraf Hakimi Bin Azmi
Date of birth	: 29/04/1994
Title	: Effects Of Annealing Temperature On Bismuth Oxyiodide Thin Film For Lead-Free Perovskite Solar Cells.

Academic session : 2020 / 2021

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

Click here to enter text.

IC/Passport No.

Click here to enter text.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

TITLE

PAGE

	ABSTRACT			II
	ABSTRAK			IV
	ACKNOWLE	DGEN	MENTS	VI
	APPROVAL			VII
	APPROVAL			VIII
	DECLARATIO	ON O	F THESIS	IX
	TABLE OF CO	ONTE	INTS	X
	LIST OF TAB	LES		XV
	LIST OF FIGURES			XVI
	LIST OF ABBREVIATIONS			XIX
	LIST OF SYM	BOL	8	XXI
	CHAPTER 1	INT	RODUCTION	1
		1.1	Background study	1
			1.1.1 Three types of energy sources in the world	1
1.1.2 Renewable energy				2
			1.1.3 Solar energy	4
			1.1.4 Solar cells	5
			1.1.5 History of solar cells	5
			1.1.6 Solar cells generations	6

	1.1.7 BiOI to replace the Pb perovskite solar cells	7
1.2	Problem statement	8
1.3	Objectives	10
1.4	Research scope	10
1.5	Significant of study	11
1.6	Outline of the thesis	11
CHAPTER 2 : LITE	RATURE REVIEW	13
2.1 Ir	troduction	13
2.2 S	2.2 Solar cells	
	2.2.1 Junction in solar cells devices	18
	2.2.2 Solar cells output parameters	21
	2.2.3 J-V Characteristic	22
2.3 S	blar energy materials	24
	2.3.1 Structure of materials	24
	2.3.2 Perovskite solar cells and perovskite structure	28
	2.3.3 Conventional absorbance material for PSCs	30
	2.3.4 Bismuth Oxyiodide (BiOI)	32

2.4 Thin film deposition	34
2.4.1 Various deposition technique used in perovskite solar cells	35
2.5 Perovskite solar cells device structure	40
CHAPTER 3 : RESEARCH METHODOLOGY	41
3.1 Introduction	41
3.2 Preparation of substrate	41
3.3 BiOI thin films deposition	44
3.4 BiOI thin film characterizations	44
3.4.1 Microstructural and compositional	44
3.4.2 Thickness measurement	47
3.4.3 Optical characterization	48
3.4.4 Structural characterization	50
3.4.4 Electronic measurement	54

3.5 Perovskite solar cells device structure	
3.5.1 Deposition of TiO2 layer using spin coating technique	
3.5.2 Spiro-ometad deposition layer	58
3.5.3 Gold coating layer	60
CHAPTER 4 : RESULTS AND DICUSSIONS	61
4.1 Introduction	61
4.2 Physical observation	62
4.3 Field Emission Scanning Electron Microscopy (FESEM) characterization	65
4.4 Thickness measurement	70
4.5 Optical properties of BiOI thin films	72
4.6 Structural characterization of BiOI thin films	77
4.7 Electrical properties characterization	81
4.8 Chemical composition of BiOI thin films	83
4.9 Solar cell efficiency results	85

CHAPTER 5 : CONCLUSION AND RECOMMENDATION FOR FUTURE WORK	
5.1 General conclusion	90
5.2 Challenge encounter in this work	94
5.3 Future works	95
REFERENCES	96
BIODATA OF STUDENT	104
LIST OF PUBLICATIONS	

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Basic parameter for J-V characteristics	23
Table 2.2	The seven primitive crystal shape and conditions	26
Table 2.3	Deposition type for BiOI thin film	34
Table 2.4	Summary of deposition type for BiOI thin film	39
Table 4.1	Energy band gap for BiOI thin films	76
Table 4.2	Summary of XRD data for BiOI thin films	80
Table 4.3	Electrical properties for the BiOI thin films	82
Table 4.4	Summary value for calculate the conversion efficiency	86

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Perovskite solar cell power conversion efficiency chart from 2008 to 2021	16
Figure 2.2	The ideal circuit for solar cells	19
Figure 2.3	The p-n junction diagram	20
Figure 2.4	Solar cell I-V characteristic	22
Figure 2.5	(a) An example of cubic unit cell and (b) crystal unit cells of cubic structure materials	26
Figure 2.6	Four common crystal lattices	27
Figure 2.7	Evolution of power conversion efficiency of PSCs compared with other solar technologies	29
Figure 2.8	Generalized lattice structure of perovskite	30
Figure 2.9	The (a) top view (b) side view structure of BiOI	33
Figure 2.10	(a) vertical Bridgman method, (b) solvo-/hydro- thermal method,(c) Successive ionic layer adsorption and reaction (SILAR), and (d) chemical vapor transport	38
Figure 3.1	Glass FTO substrate cleaning process	42

Figure 3.2	SILAR dip coating method	43
Figure 3.3	Schematic diagram of FESEM	46
Figure 3.4	The Dektak® 150 Surface Profiler	47
Figure 3.5	UV-Vis-NIR spectroscopy Lambda 750, from Perkin Elmer	49
Figure 3.6	Basic structure of UV-Vis	49
Figure 3.7	Schematic diagram for XRD	51
Figure 3.8	Simplified sketch of the X-ray source (X-ray tube), the X-ray detector, and the sample during an X-ray scan.	53
Figure 3.9	Schematic diagram of Bragg's Law	53
Figure 3.10	BiOI solar cell structure	56
Figure 3.11	TiO ₂ deposition layer (a) solution preparation (b) spin coating process	57
Figure 3.12	Spiro-ometad deposition using spin coating	59
Figure 3.13	Schematic diagram for solar cell device after completed the gold deposition	60
Figure 4.1	Colour change for (a) Bi bath and (b) KI bath	62
Figure 4.2	Physical view for as-deposited BiOI with different dipping cycle of (a) 10 (b) 20 and (c) 30 (d) 40 and (e) 50	63

Figure 4.3	Physical view of annealed BiOI at 350°C for 20 minutes for (a) 10 (b) 20 and (c) 30 (d) 40 and (e) 50	61
Figure 4.4	Physical observations of 30 cycles BiOI for annealing temperature of (a) as-deposited, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 550 °C	64
Figure 4.5	BiOI thin film flake scattered on glass substrate.	66
Figure 4.6	FESEM image of (a) as-deposited BiOI thin film and annealed BiOI films at, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 550 °C	69
Figure 4.7	The cross section image of (a) as deposited and (b) 550°C BiOI thin film	70
Figure 4.8	Thickness of the BiOI thin films	71
Figure 4.9	Absorbance spectra of as-deposited BiOI thin film and annealed BiOI films at, 250 °C, 350 °C, 450 °C and 550 °C	73
Figure 4.10	Absorbance ² , (A ²) vs Energy band gap, E_g of (a) as-deposited, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 550 °C	75
Figure 4.11	Energy band gap E_g of as-deposited BiOI layer and film annealed at 250 °C, 350 °C, 450 °C and 550 °C	76
Figure 4.12	XRD patterns of glass substrate and BiOI thin films as deposited BiOI and film annealed at 250 °C, 350 °C, 450 °C and 550 °C.	79
Figure 4.13	The conductivity of deposited BiOI and film annealed at 250 °C, 350 °C, 450 °C and 550 °C	83
Figure 4.14	The FESEM image of BiOI as deposited, EDX spectra and Bi, O and I elemental maps	84
Figure 4.15	The physical view of (a) TiO_2 and (b) spiro- ometad on the glass microscope	85
Figure 4.16	The physical view of BiOI solar cells devices for (a) as-deposited, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 550 °C	86
Figure 4.17	Graph of current density versus voltage of (a) as- deposited, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 550°C	87

LIST OF ABBREVIATIONS

CO_2	-	Carbon Dioxide
TW	-	Terawatts
Si	-	Silicon
Ge	-	Germanium
Р	-	phosPhorus
В	-	Boron
CdTe	-	Cadmium telluride
CIGS	-	Copper Indium Gallium Diselenide
PSCs	-	Perovskite Solar Cells
Pb	-	Lead
Bi	-	Bismuth
WHO	-	World Health Organization
BiOI	-	Bismuth Oxyiodide
SILAR	-	Successive ionic layer adsorption and reaction
NREL	-	National Renewable Energy Laboratory
GaInP	-	Gallium Indium Phosphide
GaAs	-	Gallium Arsenide
CIGS	-	Copper Indium Gallium Diselenide
DSSC	-	Dye Sensitized Solar Cells
TiO ₂	-	Titanium dioxide
SC	-	Simple Cubic
FCC	-	Face-Centered Cubic
BCC	-	Body Centered Cubic
SH	-	Simple Hexagonal
PCE	-	Power Conversion Energy
J-V	-	Current Density-Voltage
PV	_	Photovoltaic

CH ₃ NH ₃ PbI ₃	-	Metyl Ammonium Pb-Iodide
Sn	-	Tin
In	-	Indium
CBD	-	Chemical Bath Deposition
Eg	-	Band gap
FTO	-	Fluorine-doped Tin Oxide
Au	-	Gold
Bi(NO ₃) ₂	-	Bismuth (III) nitrate
KI	-	Potassium Iodide
EDX	-	Energy Dispersive X-Ray Analysis
FESEM	-	Field Emission Scanning Electron Microscope
UV-Vis	-	Ultraviolet–visible
XRD	-	X-ray diffraction
SEM	-	Scanning Electron Microscope
FEG	-	Field Emitter Gun
TTIP	-	Titanium (IV) isopropoxide
HTL	-	Hole transport layer
Li-TFSI	-	Lithium bis(trifluoromethanesulfonyl)imide
EHT	-	Electron High Tension
Ι	-	Iodine
0	-	Oxygen
JCPDS	-	Joint Committee on Powder Diffraction Standards
MCO	-	Movement control order

LIST OF SYMBOLS

hY	-	Light energy
η	-	Efficiency
Voc,	-	Open circuit voltage
Jsc/Isc	-	Short circuit current
FF	-	Fill factor
α	-	Alpha
β	-	Beta
γ	-	Gamma
°C	-	Degree Celsius
0	-	Degree
μ	-	Micro
θ	-	Theta
λ	-	Wavelength
α	-	absorption coefficient
С	-	constant of proportionality
h	-	Plank`s constant
v	-	frequency of light
σ	-	Conductivity

CHAPTER 1

INTRODUCTION

1.1 Background study

1.1.1 Three types of energy sources in the world

The world that we live in today, fast growing-technology is a good trend for better future for the human kind. Over the years, technology grows day after day and a lot of new devices and electrical appliance coming into the market with are increasing the energy consumption. The primary source of energy currently available can be classified to fossil fuels and renewable energy.

The conventional energy sources used widely around the world are based on fossil fuels such as petroleum, coal and natural gas (Economides et al., 2009). It is reported that the annual consumption of these sources is about 39 % from petroleum, 22 % from natural gas and 30 % from coal (Burnham et al., 2012). Fossil fuels are derived from the decomposition of plants

and animals. These fuels are found in the Earth's crust and contain carbon and hydrogen, both of which can be burned to generate energy. Fossil fuel power plants generate heat by burning coal or oil, which is then used to generate steam, which drives turbines, which generate electricity. However, it is estimated that these sources will run out within 90 years and all the fossil fuels sources of petroleum, coal and natural gas will become ceased. On top of this, the issue on global warming pollution needs to be taken seriously when we burn petroleum oil, coal, and gas. In meeting our energy needs, and we have driven the current global warming crisis as well (Hansen et al., 2005). Fossil fuels produce large quantities of carbon dioxide (CO_2) when burned these carbon emissions trap heat in the atmosphere and lead to climate change for our world. Furthermore, burning fossil fuels releases harmful greenhouse gases into the atmosphere, primarily carbon monoxide (CO).

Thus, it is important to find alternative renewable energy that can provide reliable power supplies in the future and help to slow down the climate change. Renewable energy is the kind of energy that are renewable and naturally replenished on human timescale. It is a natural form of energy that is much cleaner and sustainable. A brief discussion on this area follows in section 1.1.2.

1.1.2 Renewable energy

Many researchers aim in using green technology and renewable energy sources to replace all the conventional energy sources that hold more disadvantages. By replacing renewable energy sources for traditional energy sources, renewable energy technologies offer a great chance to reduce greenhouse gas emissions effect and global warming. Renewable