SYNTHESIS OF NASICON BASED (Na₃V_{2-x}Mo_x(PO₄)₃/C) AS HIGH CAPACITY AND STABLE CYCLING CATHODE MATERIALS FOR SODIUM-ION BATTERIES

MOHAMAD FIRDAUS BIN ROSLE

DOCTOR OF PHILOSOPHY (PHYSICS)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2021

SYNTHESIS OF NASICON BASED (Na₃V_{2-x}Mo_x(PO₄)₃/C) AS HIGH CAPACITY AND STABLE CYCLING CATHODE MATERIALS FOR SODIUM-ION BATTERIES

MOHAMAD FIRDAUS BIN ROSLE

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Doctor of Philosophy (Physics)

ABSTRACT

Sodium-ion batteries are techno-economically viable as a complement to the lithium-ion battery market segment. Among its kind, NASICON-structured $Na_3V_2(PO_4)_3/C$ offers improved Na^+ insertion-extraction retention over high capacity, however, suffered from deterioration of cycle life and reduction of capacity retention. Establishment of the novel stoichiometric cathode by rejuvenating the interoperable parameters of calcination temperature and Mo6+ substitution on Na₃V₂(PO₄)₃/C physicochemical performance is presented. Series of Na₃V_{2-x}Mo_x(PO₄)₃/C ($0 \le x \le 1$) were synthesized by the self-catalysed sol-gel route have been investigated via experimental work and Density Functional Theory (DFT) simulation, to resolve these issues. Thermal Gravimetric Analyzer (TGA) designed optimum heat treatment procedure while X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared (FTIR) results confirmed the Mo⁶⁺ partial replacement on the V^{3+} site lattice resulting in significant electrochemical enhancement exhibited by Charge-Discharge (CD), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) profile. Na₃V_{1.7}Mo_{0.3}(PO₄)₃/C demonstrates the highest specific capacity of 122 mAh g⁻¹ at 0.2C current rate. Two potential discharged plateaus are observed at 3.4 V and 1.6 V (vs. Na⁺/Na), corresponding to the V^{3+}/V^{4+} and V^{2+}/V^{3+} redox couple's activities respectively. Varied Mo⁶⁺ substitutions in Na₃V₂(PO₄)₃/C crystalline structure indicate variations in d-spacing and lattice parameter values. Interestingly, Na₃V₁Mo₁(PO₄)₃/C corresponds to the highest Mo⁶⁺ concentration exhibits an extended voltage plateau in the low voltage region at 1.6 V which is promising as an anodic electrode for Na-ion batteries.

ABSTRAK

Bateri ion-sodium secara tekno-ekonomi berdaya maju sebagai pelengkap segmen pasaran bateri ion-litium. Dikalangan jenisnya, Na₃V₂(PO₄)₃/C berstruktur NASICON menawarkan daya kekal penyisipan-pengekstrakan Na⁺ yang lebih baik terhadap kapasiti tinggi, namun mengalami kemerosotan hayat kitaran dan pengurangan kapasiti kekal. Pembangunan stoikiometrik katod baru dengan menjajarkan semula parameter saling operasi suhu kalsinasi dan substitusi Mo⁶⁺ terhadap prestasi fizikokimia Na₃V₂(PO₄)₃/C telah dibentangkan. Siri Na₃V₂- $_{x}Mo_{x}(PO_{4})_{3}/C$ ($0 \le x \le 1$) disintesis melalui proses sol-gel katalis spontan dikaji melalui eksperimental dan simulasi Teori Fungsi Kepadatan (DFT) untuk menguraikan permasalahan ini. Analisa Gravimatrik Terma (TGA) merekabentuk prosedur rawatan haba optimum sementara Pembelau X-ray (XRD), Spektroskopi Fotoelektron X-ray (XPS), dan Inframerah Transformasi Fourier (FTIR) mengesahkan substitusi Mo⁶⁺ terjadi pada kekisi V³⁺ menghasilkan peningkatan elektrokimia signifikan berdasarkan profil Cas-Nyahcas (CD), Voltammetri Kitaran (CV) dan Spektroskopi Impeden Elektrokimia (EIS). Na₃V_{1.7}Mo_{0.3}(PO₄)₃/C menunjukkan kapasiti spesifik tertinggi iaitu 122 mAh g⁻¹ pada beban arus 0.2 C. Dua dataran voltan nyahcas diperhatikan pada 3.4 V dan 1.6 V (terhadap Na⁺/Na), menepati aktiviti pasangan redoks V³⁺/V⁴⁺ dan V²⁺/V³⁺. Substitusi Mo⁶⁺ yang berbeza dalam struktur kristal Na₃V₂(PO₄)₃/C menunjukkan variasi pada nilai parameter jarak-d dan parameter kekisi. Menariknya, Mo^{6+} $Na_3V_1Mo_1(PO_4)_3/C$ yang berpadanan dengan kepekatan tertinggi memperlihatkan lanjutan dataran voltan di kawasan voltan rendah pada 1.6 V yang menjanjikan potensi sebagai elektrod anodik untuk bateri ion-sodium.

ACKNOWLEDGEMENTS

First and foremost, praise and gratitude to Allah Almighty for blessing me far more than I deserve. Even though I stumbled along balancing working and dissertation battles for a long time, I'm grateful for the pain that taught me to appreciate this breakeven point of success.

Honorable mention for my main adviser, Lt. Kol. Prof. Ts. Dr. Muhd Zu Azhan bin Yahya, who engaged me in a precious educational process, instilled in me positive enthusiasm, and guided me for vast knowledge. A deep sense of thanks is also extended to Dr. Fadhlul Wafi bin Badruddin and Prof Madya Dr. Siti Aminah Binti Mohamad Noor for their huge help in scholarly guidance, scientific approach, and timely assistance in completing this dissertation process. Special thanks also acknowledge to the Faculty of Science and Defense Technology and Centre of Graduate Study, UPNM for facilitating matters throughout the learning curve.

My heartfelt appreciation also goes to my colleagues at Advanced Materials Research Centre, SIRIM Industrial Research, for their knowledge sharing and technical assistance throughout my research journey. Special thanks are also extended to the SIRIM Berhad management for their financial support and opportunity to pursue my Ph.D.

Last but not least, I would like to express my deepest gratitude and love to my family members, particularly my parent, Hj. Rosle Ahmad and Hjh. Rohani Ibrahim, for their spiritual support and for always inspiring me throughout my life, and to my wife, Saidah Md Said, for all the sacrifices and patience she had to endure during my thesis preparation. You are all my driving force, and only God can repay all the good deeds done.

APPROVAL

The Examination Committee has met on **16 November 2021** to conduct the final examination of **Mohamad Firdaus bin Rosle** on his degree thesis entitled **'Synthesis** of NASICON Based (Na₃V_{2-x}Mo_x(PO₄)₃/C) as High Capacity and Stable Cycling Cathode Materials for Sodium-ion Batteries.

The committee recommends that the student be awarded the of Doctor of Philosophy (Physics).

Members of the Examination Committee were as follows.

Prof. Dr. Ong Keat Khim Centre for Defence Research And Technology Universiti Pertahanan Nasional Malaysia (Chairman)

Prof. Madya Ts. Dr. Norhana binti Abdul Halim Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Dr. Pramod K. Singh School of Basic Sciences and Research Sharda University India (External Examiner)

Prof. Dr. Ab Malik Marwan bin Ali

Faculty of Applied Sciences Universiti Teknologi MARA (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Doctor of Philosophy (Physics)**. The members of the Supervisory Committee were as follows.

Lt. Kol. Prof. Ts. Dr. Muhd Zu Azhan bin Yahya

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Prof Madya Dr. Siti Aminah Binti Mohamad Noor Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

Dr. Fadhlul Wafi bin Badruddin

Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Mohamad Firdaus bin Rosle
Date of birth	: 29 June 1984
Title	: Synthesis of NASICON Based (Na ₃ V _{2-x} Mo _x (PO ₄) ₃ /C) as High Capacity and Stable Cycling Cathode Materials for Sodium-ion Batteries
Academic session	: 2021

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

	(Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

IC/Passport No.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

IIILE

ABSTRACT ABSTRAK ACKNOWLED APPROVAL APPROVAL DECLARATIO TABLE OF CO LIST OF TABI LIST OF FIGU LIST OF ABBH LIST OF SYMI LIST OF APPE	OGEMENTS ON OF THESIS ONTENTS LES RES RES REVIATIONS BOLS INDICES		ii iv v vii viii ix xiii xv xx xxi xxi
CHAPTER 1	INTRODUCTION		23
	1.1 Background	23	
	1.2 Problem Statements	25	
	1.3 Objectives	26	
	1.4 Dissertation Novelty	27	
	1.5 Research Hypothesis	28	
	1.6 Thesis Organization	29	
CHAPTER 2	LITERATURE REVIEW		31
	2.1 Introduction	31	
	2.2 Energy Storage System Forecast	32	
	2.2.1 Battery Energy Storage System (BESS)	33	
	2.2.2 Dynamic of Li-ion Beyond Convention	al	
	Rechargeable Batteries	35	
	2.2.3 Techno-economic of Li-ion Versus Lea	.d-	
	acid Batteries	37	
	2.3 Lithium-ion Cathodic Materials	39	
	2.3.1 Vanadium Based of Lithium Polyanion		
	Phosphates	41	
	2.3.2 Li-ion Towards the Viable Alternative	of	
	Na-ion Batteries	48	
	2.4 Na-ion Cathodic Materials	52	
	2.4.1 Na Layered Transition Metal Oxide	54	
	2.4.2 Sodium Polyanion Phosphates	61	
	2.4.3 Sodium Vanadium Phosphate		
	$[Na_3V_2(PO_4)_3]$	66	
	2.4.4 Synthesis Method of $Na_3V_2(PO_4)_3$	69	

	2.4.5 Intrinsic Structural Challenges of		
	$Na_3V_2(PO_4)_3$	78	
	2.4.6 Enhancement of Na ₃ V ₂ (PO ₄) ₃ Performa	ance	
	by Cation Substitution	80	
	2.5 Summary	86	
	5		
CHAPTER 3	RESEARCH METHODOLOGY		87
	3.1 Introduction	87	
	3.2 Density Functional Theory (DFT) Calculation	n 88	
	3.3 Synthesis of Single Phase Na ₃ V _{2-x} Mo _x (PO ₄) ₃	/C	
	$(0 \le x \le 1)$ by Sol-gel Method	89	
	3.3.1 Synthesis of Single-phase Na ₃ V ₂ (PO ₄) ₃	₃ /C89	
	3.3.2 Synthesis of Mo Substituted Na ₃ V ₂ (PO	4) ₃ /C	
	Composite	93	
	3.4 Electrolyte Preparation	94	
	3.5 Fabrication of Cathode Electrode and Half-ce	ell	
	Assembly	96	
	3.5.1 Coated Cathode Electrode	96	
	3.5.2 Na-ion Half-cell Assembly	97	
	3.6 Physical Characterization	98	
	3.6.1 Thermal Gravimetric Analysis (TGA)	98	
	3 6 2 XRD Phase Identification	99	
	3 6 3 Brunguer-Emmet-Teller (BET)	100	
	3.6.4 Fourier Transform Infrared (FT-IR)	100	
	Spectroscopy	101	
	3 6 5 X-ray Photoelectron Spectroscopy	101	
	(YDS)	102	
	3.6.6 Scanning Electron Microscope (SEM	102	
	5.0.0 Scalining Electron Microscope (SEM-	102	
	EDA) 27 Electrochemical Characterization of	105	
	5.7 Electrochemical Characterization of No. Mo. $V_{\rm electrochemical Characterization of No. No. No. V. (DO.) (C. Sories$	104	
	Na ₃ NiO _x $v_{2-x}(PO4)_3/C$ Series	104	
	3.7.1 Galvanostatic Charge-Discharge (CD)	104	
	lest	104	
	3.7.2 Cyclic Voltammetry (CD) Test	105	
	3.7.3 Electrochemical Impedance Spectrosco	ipy	
	(EIS) Tests	105	
	3.8 Summary	106	
	OPTIMIZATION OF DUOM DOUEDDAL D) _	
CHAPIER 4	UPTIMIZATION OF RHOMBUHEDRAL R.	SC-	107
	Na3 V2(PO4)3/C	107	107
	4.1 Introduction 4.2 Density Fernational Theory (DET) of	107	
	4.2 Density Functional Theory (DFT) of $N_0 N_1$ (DQ)	100	
	$1Na_3 V_2(PO_4)_3$	108	
	4.2.1 Structural Parameters of $Na_3V_2(PO_4)_3$ a	ind	
	$NaV_2(PO_4)_3$	108	
	4.2.2 Atomic Population of the Atoms in the		
	$Na_3V_2(PO_4)_3$	111	

х

		4.2.3 Bond Length and Bond Order of	
		Na ₃ V ₂ (PO_4) ₃ and NaV ₂ (PO_4) ₃ De-sodia	ted
		State	112
		4.2.4 Density of States (DOS) of Na ₃ V ₂ (PO ₄)	3
		and $NaV_2(PO_4)_3$	114
	4.3	Synthesis of Na ₃ V ₂ (PO_4) ₃ /C With High	
	e	Crystallographic Order	115
		4 3 1 Chemical Reaction of Na ₃ V ₂ (PO ₄) ₃ /C	
		During Sol-gel Synthesis	115
		4 3 2 Thermo-gravimetric Analysis (TGA-DT	TA)
		of Na ₂ V ₂ (PO_4) ₂ /C	118
		4 3 3 Molecule Vibrational FT-IR Spectrum of	of
		4.5.5 Molecule Violational I I in Spectrum C Na ₂ V ₂ (PO ₄) ₂ /C	122
		A 3 A X-ray Diffraction (XRD) Analysis of	122
		$4.5.4 A-ray Diffraction (ARD) Analysis of Na2V2(PO_1)2/C$	124
		4 2 5 V ray Distrolation Spectroscopy	124
		(VDC)	105
		(APS)	123
		4.3.6 Electrochemical Performance of	100
		Na ₃ V ₂ (PO ₄) ₃ /C	128
		4.3./ EIS Spectra Analysis on Transport	120
		Properties of Na ₃ V ₂ (PO ₄) ₃ /C	130
	4.4	Effect of Calcination Temperature on	
		Electrochemical Performance of	100
		$Na_3V_2(PO_4)_3/C.$	133
		4.4.1 Crystallographic Patterns of $Na_3V_2(PO_4)$) ₃ /C
		at Different Calcination Temperatures	133
		4.4.2 Evolution of Na ₃ V ₂ (PO ₄) ₃ /C Microstruc	ture
		at Different Calcination Temperature	135
		4.4.3 Charge-discharge Performance of	
		Na ₃ V ₂ (PO ₄) ₃ /C at Different Calcination	l
		Temperature	139
	4.5	Summary	144
5	TA	ILORING Na ₃ V _{2-x} Mo _x (PO ₄) ₃ (0≤x≤1)	
	EL	ECTROCHEMICAL PERFORMANCE VL	A THE MO ⁶⁺
	SUI	BSTITUTION	145
	5.1	Introduction	145
	5.2	Density Functional Theory (DFT) Calculation	s of
		the Na ₃ V _{2-x} Mo _x (PO ₄) ₃ ($0 \le x \le 1$)	146
	5.3	Solid Solution Analysis of Na ₃ V _{2-x} Mo _x (PO ₄)	3
		$(0 \le x \le 1)$	148
		5.3.1 XRD Patterns of the Na ₃ V _{2-x} Mo _x (PO ₄) ₃	
		$(0 \le x \le 1)$ Series	148
		5.3.2 XPS Chemical State Element of the Na ₃	V ₂₋
		$_{x}Mo_{x}(PO_{4})_{3}$ ($0 \le x \le 1$) Series	155
		5.3.3 Morphological Structure Changes of Na	3V2-
		$_xMo_x(PO_4)_3/C$ ($0 \le x \le 1$) Series	161

145

CHAPTER

	5.3.4 EDX Results of Mo ⁶⁺ Partial Repl	acement	
	in Na ₃ V _{2-x} Mo _x (PO ₄) ₃ /C (0≤x≤1)	Series 168	
	5.3.5 BET and N ₂ Physisorption of the 1	Na_3V_{2}	
	$_{x}Mo_{x}(PO_{4})_{3}$ ($0 \le x \le 1$) Series	171	
	5.4 Electrochemical Analysis	179	
	5.4.1 Charge-discharge Performance of	Na_3V_{2}	
	_x Mo _x (PO ₄) ₃ /C (0≤x≤1)	179	
	5.4.2 Oxidation-reduction Profile of Hig	gh Mo ⁶⁺	
	Concentration on Anodic Perform	nance 192	
	5.4.3 EIS Spectra Analysis on Transpor	t	
	Properties of Na ₃ V _{2-x} Mo _x (PO ₄) ₃ /		
	$(0 \le x \le 1)$	193	
	5.5 Summary	200	
CHAPTER 6	CONCLUSION AND RECOMMENDAT	IONS	201
	6.1 Conclusions	201	
	6.2 Future Outlook	203	
REFERENCES			206
APPENDIX A			233
APPENDIX B			233
BIODATA OF S	TUDENT		237
LIST OF PUBLICATIONS			239

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Summary of distinct $Li_3V_{2-x}Tm_x(PO_4)_3$ electrochemical performance induced by various transition metal (Tm) dopants using discrete synthesis methods	45
Table 2.2	Comparison of 0_3 -NaTm _x O_2 electrochemical performance induced by various transition metal (Tm) dopants	57
Table 2.3	Comparison of P_2 -NaTm _x O ₂ electrochemical performance induced by various transition metal (Tm) dopants	60
Table 2.4	Na-polyanion electrochemical performance demonstrates by phosphates, fluorophosphates, pyrophosphates, sulphates, and silicates framework	65
Table 2.5	Benefits and drawbacks of the commonly used method for synthesising $Na_3V_2(PO_4)_3$ cathode materials	70
Table 2.6	Comparison of Na ₃ V ₂ (PO ₄) ₃ /C electrochemical performance yield from typical synthesis methodologies	76
Table 2.7	Comparison of the electrochemical performance of $Na_3V_2(PO_4)_3/C$ composites induced by transition metal substitution varieties	84
Table 3.1	Design of experiment for calcination temperature optimization to synthesis highly crystalline $Na_3V_2(PO_4)_3/C$ composite	90
Table 3.2	Design of experiment for Mo substitution to produce $Na_3V_{2-x}Mo_x(PO_4)_3/C$	93
Table 3.3	Electrochemical conductivity of organic electrolyte of 1.0M NaPF ₆ in binary and ternary solvents system	95
Table 4.1	Atomic coordinate of Na ₃ V ₂ (PO ₄) ₃ crystal structure	109
Table 4.2	Structural parameters of $Na_3V_2(PO_4)_3$ and $NaV_2(PO_4)_3$ from LDA and GGA-PBE compared to experimental data	110

Table 4.3	The atomic population of the atoms in the $Na_3V_2(PO_4)_3$ before and after Na extraction from Mulliken population analysis and their differences in charge Δe	112
Table 4.4	Bond length and bond order (in bracket) for sodiated and desodiated state of $Na_3V_2(PO_4)_3$ and $NaV_2(PO_4)_3$	113
Table 4.5	Synthesis parameter to achieve standard reaction of $Na_3V_2(PO_4)_3/C$	116
Table 5.1	Lattice parameter value of the simulated $Na_3V_{2-x}Mo_x(PO_4)_3$ (0 \leq x \leq 1) series	148
Table 5.2	Changes of d-spacing and 2-Theta value for $V_{2-x}(PO_4)_3$ XRD diffractograms affected by various Mo^{6+} ($0 \le x \le 1$) substitution	152
Table 5.3	Lattice parameter value of the $Na_3V_{2-x}Mo_x(PO_4)_3$ ($0 \le x \le 1$) series based on experimental XRD data	155
Table 5.4	Summary of surface area and pore size values calculated for each series of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (x=0, 0.1, 0.3, 0.5, 1)	179
Table 5.5	Discharged capacity of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ ($0 \le x \le 1$) series as a result of nominal voltage plateaus and potential falls	181
Table 5.6	Discharge capacity at 2.5 V and 1 V cut-off voltages for each pristine and $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (x=0.1, 0.3, 0.5 and 1) samples	183
Table 5.7	Summary of energy efficiency compose by charging and discharging profile for each of the $Na_3V_{2-x}Mo_x(PO_4)_3/C$ ($0 \le x \le 1$) series	188
Table 5.8	Summary of resistance value based on impedance spectra for each of the Na ₃ V _{2-x} Mo _x (PO ₄) ₃ /C ($0 \le x \le 1$) series	197

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Classification of energy storage technologies for stationary power supply applications	33
Figure 2.2	Performance of different energy storage technologies based on volumetric power rating and rate of response time for specific applications	35
Figure 2.3	Comparison of dynamics performance based on different commercial rechargeable batteries technologies	37
Figure 2.4	Li-ion battery cell cost declination forecast for consumer electronics and large-scale LIBs	38
Figure 2.5	Comparison of LCOE value for lead-acid, high power density lithium-ion, and high energy density lithium-ion batteries in terms of various battery operating lifetimes	39
Figure 2.6	Similarities of battery cell architecture consisting the cathode, anode, and organic electrolyte for a) lithium-ion battery b) sodium-ion battery c) discharge rate performance for 18650 SIBs and d) discharge cycle life for 18650 SIBs	49
Figure 2.7	Four common LIBs or SIBs cell formats (a) coin (b) cylindrical (c) prismatic and (d) pouch cell	50
Figure 2.8	Comparison of the electrochemical performance and autonomy offered by several companies, notably as Toshiba (NMC/Li ₄ Ti ₅ O ₁₂ pouch cell), Tiamat (NVPF)/hard carbon 18650 cell), Faradion ($N_{ax}M_{1-y-z}M'_yM''_zO_2$ /hard carbon pouch cell) and commercial LFP cell	51
Figure 2.9	Comparison of cost pattern between Li_2CO_3 and Na_2CO_3 precursors across the last 15 years	52
Figure 2.10	Review on current research progress of SIBs cathode materials	54

Figure 2.11	Phase structure of Na-layered oxide based on P2 and O3 type with different oxygen stacking in ABBA or ABCABC packing	55
Figure 2.12	$\begin{array}{llllllllllllllllllllllllllllllllllll$	59
Figure 2.13	Derivation of mixed polyanion cathode materials for sodium-ion batteries based on phosphate, fluorophosphate, pyrophosphate, and sulphate families	62
Figure 2.14	NASICON structure of $Na_3V_2(PO_4)_3$ and its fluoro-derivatives $Na_3(VO_{1x}PO_4)_2{F_1}^{+2}$	66
Figure 2.15	$Na_3V_2(PO_4)_3$ crystallographic structure formed by repeated $[V_2(PO_4)_3]$ units and Na ion occupancy in Na1 and Na2 sites	68
Figure 2.16	Probabilities of Na-ion migration pathways throughout the $Na_3V_2(PO_4)_3$ structure (a) along the x-axis, (b) along the y-axis, and (c) along the z-axis	69
Figure 2.17	Schematic of V-O covalency on the orbital energy level	80
Figure 3.1	$Na_3V_{2-x}Mo_x(PO_4)_3/C$ synthesis and performance characterization process flow	88
Figure 3.2	Synthesis process flow of the single-phase $Na_3V_2(PO_4)_3$ via a combination of sol-gel and calcination methods	91
Figure 3.3	Materials deformation flow of each synthesized process for $Na_3V_2(PO_4)_3/C$ and $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (x = 0.1, 0.3, 0.5, and 1) by sucrose-assisted sol-gel method	92
Figure 3.4	Process flow for the synthesis of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ series via a combination of sol-gel and calcination method	94
Figure 3.5	Process flow for the preparation of organic electrolytes based on NaPF ₆ , NaBF ₄ , and NaClO ₄ salts in binary and ternary systems of 99 % anhydrous organic solvents	95
Figure 3.6	Process flow of the electrode fabrication for the $Na_3V_2(PO_4)_3$ and $Na_3V_{2-x}Mo_x(PO_4)_3/C$ series coated with a doctor blade technique	97

Figure 3.7	Na-ion cell configuration consists of the working electrode, separator, and counter electrode based on coin cell type	98
Figure 3.8	Sample preparation and placement method for TGA and DTA measurement	99
Figure 3.9	Illustration of powder samples deposition into the XRD sample holder well	100
Figure 3.10	Sample preparation and placement method for TGA and DTA measurement	101
Figure 3.11	Process flow of the XPS mounting method for $Na_3V_{2-x}Mo_x(PO_4)_3/C$ powders analysis	103
Figure 4.1	Crystal structure of $Na_3V_2(PO_4)_3/C$ with rhombohedral R-3c space group	108
Figure 4.2	Partial and total density of states (DOS) of (a) $Na_3V_2(PO_4)_3$ and (b) $NaV_2(PO_4)_3$	115
Figure 4.3	Thermogravimetric (TG) profile for $Na_3V_2(PO_4)_3/C$ synthesis under argon (black) and nitrogen (blue) gas flow	120
Figure 4.4	Thermogravimetric DTA-DTG profile for $Na_3V_2(PO_4)_3/C$ synthesis under (a) argon and (b) nitrogen gas stream at the heating rate of 5 °C m ⁻¹	121
Figure 4.5	FT-IR spectrum of the $Na_3V_2(PO_4)_3/C$ composite in the wavenumber range of 550 - 4000 (a) before calcination (b) after calcination at 900°C	123
Figure 4.6	XRD patterns of single-phase $Na_3V_2(PO_4)_3/C$ assynthesized powder	124
Figure 4.7	XPS spectra of $Na_3V_2(PO_4)_3/C$ calcined at 900°C compose by four main peaks of (a) C1s, (b) O1s, (c) V2p, and (d) P2p elements	127
Figure 4.8	Electrochemical discharged curve of $Na_3V_2(PO_4)_3/C$ calcined at 900°C under (a) argon and (b) nitrogen gas streams between 4.0 V and 1. 0 V voltage window	129
Figure 4.9	Results of the Na ₃ V ₂ (PO ₄) ₃ /C half cells (a) Nyquist plot (b) Bode plot, measured at corresponding electrical feedback voltage signal between frequency ranges of 0.01Hz to 100kHz at 50% state-of-charge	132

Figure 4.10	Comparison of XRD patterns for Na ₃ V ₂ (PO ₄) ₃ /C yield at difference calcination temperatures	134
Figure 4.11	SEM micrograph of $Na_3V_2(PO_4)_3/C$ particles under (a) pre- calcined at 400°C and varies calcined temperatures at (b) 800°C (c) 850°C (d) 900°C (e) 950°C and (f) 1000°C	138
Figure 4.12	Charged-discharged profiles measured at 0.2C of (a) various calcination temperatures (b) discharge curves affected by various calcination temperatures at the 20th cycle	140
Figure 4.13	Comparison of the discharged profile at (a) 1st cycle (b) 5th cycle (c) 10th cycle, and (d) 20th cycle induced by various calcination temperatures	143
Figure 5.1	Lattice parameter changes of the $Na_3V_{2-x}Mo_x(PO_4)_3$ ($0 \le x \le 1$) series based on DFT calculations	147
Figure 5.2	XRD pattern of the Na ₃ V _{2-x} Mo _x (PO ₄) ₃ /C ($0 \le x \le 1$) series	150
Figure 5.3	Intensity changes and peak shift for $V_{2-x}(PO_4)_3$ XRD patterns affected by varies Mo^{6+} ($0 \le Mo \le 1$) substitution	151
Figure 5.4	Lattice parameter changes of the $Na_3V_{2-x}Mo_x(PO_4)_3$ ($0 \le x \le 1$) series based on experimental XRD data	154
Figure 5.5	XPS spectra fitting for the core levels of (a) O1s and (b) $V2p_{3/2}$ for the pristine $Na_3V_2(PO_4)_3/C$	157
Figure 5.6	XPS spectra fitting for the core levels of (a) O1s (b) $V2p_{3/2}$ and (c) Mo3d for the $Na_3V_{1.7}Mo_{0.3}(PO_4)_3/C$	159
Figure 5.7	XPS spectra fitting for the core levels of (a) O1s (b) $V2p_{3/2}$ and (c) $Mo3d_{3/2}$ for the $Na_3V_1Mo_1(PO_4)_3/C$	161
Figure 5.8	SEM images of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ at different Mo^{6+} substitution ratio (a) x=0 (b) x=0.1 (c) x=0.3 (d) x=0.5 and (e) x=1	167
Figure 5.9	Deformulation of elemental composition for $Na_3V_{2-x}Mo_x(PO_4)_3/C$ series (a) x=0 (b) x=0.1 (c) x=0.3 (d) x=0.5 and (e) x=1	170
Figure 5.10	XPS spectra fitting for the core levels of (a) O1s (b) $V2p_{3/2}$ and (c) $Mo3d_{3/2}$ for the $Na_3V_1Mo_1(PO_4)_3/C$	170

Figure 5.11	Nitrogen adsorption-desorption isotherm curve against relative pressure for each series of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (a) x=0 (b) x=0.1 (c) x=0.3 (d) x=0.5 and (e) x=1	174
Figure 5.12	IUPAC reference of N_2 adsorption-desorption isotherm type	175
Figure 5.13	BJH Pore size distribution and BET surface area curve for each series of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (a) x=0 (b) x=0.1 (c) x=0.3 (d) x=0.5 and (e) x=1	178
Figure 5.14	Discharged capacity profile of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ ($0 \le x \le 1$) induces by different Mo^{6+} substitution ratio	181
Figure 5.15	Discharged capacities value of $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (x=0, 0.1, 0.3, 0.5 and 1) drained at 2.5V and 1V	183
Figure 5.16	Full charged and discharged profile of each $Na_3V_{2-x}Mo_x(PO_4)_3/C$ series (a)x=0, (b)x=0.1, (c)x=0.3, (d)x=0.5, and (e)x=1	187
Figure 5.17	Energy efficiency percentage for each of the $Na_3V_{2\text{-}}_{x}Mo_x(PO_4)_3/C \ (0{\leq}x{\leq}1) \text{ series}$	188
Figure 5.18	Comparison of charged and discharged profile at 1st, 5th, 10th, 15th and 20th for (a) pure $Na_3V_2(PO_4)_3/C$ and (b) $Na_3V_{1.7}Mo_{0.3}(PO_4)_3/C$ (substitution ratio x=0.3)	190
Figure 5.19	Galvanostatic cycling performance of each series at charge- discharge rates of 0.2 C, 0.5 C, 0.75 C, 1 C, and 0.2 C	191
Figure 5.20	$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	193
Figure 5.21	Impedance analysis of each $Na_3V_{2-x}Mo_x(PO_4)_3/C$ series (a) EIS Nyquist plots (b) fitted Electrical Equivalent Circuit (EEC)	196
Figure 5.22	Bode phase plot of each $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (x=0, 0.1, 0.3, 0.5 and 1)	199
Figure 5.23	Bode modulus plot of each $Na_3V_{2-x}Mo_x(PO_4)_3/C$ (x=0, 0.1, 0.3, 0.5 and 1)	199

LIST OF ABBREVIATIONS

-	Lithium-Ion Batteries
-	Sodium-Ion Batteries
-	Sodium Super Ionic Conductor
-	Density Functional Theory
-	Cambridge Serial Total Energy Package
-	Battery Energy Storage System
-	Thermo-Gravimetric Analysis
-	X-Ray Diffraction
-	Brunauer-Emmet-Teller
-	Fourier Transform Infrared
-	X-ray Photoelectron Spectroscopy
-	Scanning electron microscope
-	Barret-Joyner-Halenda
-	Energy-Dispersive X-ray
-	Charge-Discharge
-	Cyclic Voltammetry
-	Density of State
-	Electrochemical Impedance Spectroscopy
-	Equivalent Electrical Circuit
-	International Union of Pure and Applied Chemistry

LIST OF SYMBOLS

I - Current

V - Voltage

- R_{el} Electrolyte resistance
- R_{ct} Charge transfer resistance
- R_{sl} Surface layer resistance
- CPE Capacitive constant phase element
- W Warburg diffusion
- Q Charge
- P Pressure
- C Current rate
- r Radius
- X_m Electronegativity value
- θ Incident angle
- *d* Inter-planar spacing
- λ Wavelength of X-ray
- E_{be} Binding energy
- *hv* Shift in photon energy
- σ Warburg coefficient
- Z' Real Impedance

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Calculation For Mass Of Raw Materials	233
Appendix B	Analysis of Electrochemical Conductivity of Organic	235
	Electrolyte	

CHAPTER 1

INTRODUCTION

1.1 Background

The growing demand for high-capacity energy and power storage, fuelled by the urgent needs of contemporary electronic gadgets and the electric vehicle industry, has resulted in a recent surge in sales of rechargeable lithium-ion batteries. Since its commercial establishment in the early 1990s pioneering by Sony, rechargeable lithium-ion batteries have dominated the energy storage market under which had seized out the lead-acid, nickel-cadmium, and nickel-metal-hydrate as the previous nomination technology of choice. Lithium-ion batteries are notable for their large electrochemical potential, high gravimetric and volumetric energy density, low selfdischarging rate, and excellent storage characteristic. Despite those significant key features, massive production of lithium-ion batteries had increased the global market anxiety towards the imminent exhaustion of lithium resources consequently to the arising of lithium precursor global price.

The new pace of change in large-scale smart grid technology developments remarkably required a large-scale energy storage system. Therefore, economic cost reduction and renewable resources are twofold concerns required to manage optimum