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ABSTRACT 

 

Sodium-ion batteries are techno-economically viable as a complement to the 

lithium-ion battery market segment. Among its kind, NASICON-structured 

Na3V2(PO4)3/C offers improved Na+ insertion-extraction retention over high capacity, 

however, suffered from deterioration of cycle life and reduction of capacity retention. 

Establishment of the novel stoichiometric cathode by rejuvenating the interoperable 

parameters of calcination temperature and Mo6+ substitution on Na3V2(PO4)3/C 

physicochemical performance is presented. Series of Na3V2-xMox(PO4)3/C (0≤ x ≤1) 

were synthesized by the self-catalysed sol-gel route have been investigated via 

experimental work and Density Functional Theory (DFT) simulation, to resolve these 

issues. Thermal Gravimetric Analyzer (TGA) designed optimum heat treatment 

procedure while X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), 

and Fourier Transform Infrared (FTIR) results confirmed the Mo6+ partial replacement 

on the V3+ site lattice resulting in significant electrochemical enhancement exhibited 

by Charge-Discharge (CD), Cyclic Voltammetry (CV) and Electrochemical Impedance 

Spectroscopy (EIS) profile. Na3V1.7Mo0.3(PO4)3/C demonstrates the highest specific 

capacity of 122 mAh g-1 at 0.2C current rate. Two potential discharged plateaus are 

observed at 3.4 V and 1.6 V (vs. Na+/Na), corresponding to the V3+/V4+ and V2+/V3+ 

redox couple’s activities respectively. Varied Mo6+ substitutions in Na3V2(PO4)3/C 

crystalline structure indicate variations in d-spacing and lattice parameter values. 

Interestingly, Na3V1Mo1(PO4)3/C corresponds to the highest Mo6+ concentration 

exhibits an extended voltage plateau in the low voltage region at 1.6 V which is 

promising as an anodic electrode for Na-ion batteries.  
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ABSTRAK 

 

Bateri ion-sodium secara tekno-ekonomi berdaya maju sebagai pelengkap 

segmen pasaran bateri ion-litium. Dikalangan jenisnya, Na3V2(PO4)3/C berstruktur 

NASICON menawarkan daya kekal penyisipan-pengekstrakan Na+ yang lebih baik 

terhadap kapasiti tinggi, namun mengalami kemerosotan hayat kitaran dan 

pengurangan kapasiti kekal. Pembangunan stoikiometrik katod baru dengan 

menjajarkan semula parameter saling operasi suhu kalsinasi dan substitusi Mo6+ 

terhadap prestasi fizikokimia Na3V2(PO4)3/C telah dibentangkan. Siri Na3V2-

xMox(PO4)3/C (0≤ x ≤1) disintesis melalui proses sol-gel katalis spontan dikaji melalui 

eksperimental dan simulasi Teori Fungsi Kepadatan (DFT) untuk menguraikan 

permasalahan ini. Analisa Gravimatrik Terma (TGA) merekabentuk prosedur rawatan 

haba optimum sementara Pembelau X-ray (XRD), Spektroskopi Fotoelektron X-ray 

(XPS), dan Inframerah Transformasi Fourier (FTIR) mengesahkan substitusi Mo6+ 

terjadi pada kekisi V3+ menghasilkan peningkatan elektrokimia signifikan berdasarkan 

profil Cas-Nyahcas (CD), Voltammetri Kitaran (CV) dan Spektroskopi Impeden 

Elektrokimia (EIS). Na3V1.7Mo0.3(PO4)3/C menunjukkan kapasiti spesifik tertinggi 

iaitu 122 mAh g-1 pada beban arus 0.2 C. Dua dataran voltan nyahcas diperhatikan 

pada 3.4 V dan 1.6 V (terhadap Na+/Na), menepati aktiviti pasangan redoks V3+/V4+ 

dan V2+/V3+. Substitusi Mo6+ yang berbeza dalam struktur kristal Na3V2(PO4)3/C 

menunjukkan variasi pada nilai parameter jarak-d dan parameter kekisi. Menariknya, 

Na3V1Mo1(PO4)3/C yang berpadanan dengan kepekatan Mo6+ tertinggi 

memperlihatkan lanjutan dataran voltan di kawasan voltan rendah pada 1.6 V yang 

menjanjikan potensi sebagai elektrod anodik untuk  bateri ion-sodium. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 Background 

 

The growing demand for high-capacity energy and power storage, fuelled by 

the urgent needs of contemporary electronic gadgets and the electric vehicle industry, 

has resulted in a recent surge in sales of rechargeable lithium-ion batteries. Since its 

commercial establishment in the early 1990s pioneering by Sony, rechargeable 

lithium-ion batteries have dominated the energy storage market under which had 

seized out the lead-acid, nickel-cadmium, and nickel-metal-hydrate as the previous 

nomination technology of choice. Lithium-ion batteries are notable for their large 

electrochemical potential, high gravimetric and volumetric energy density, low self-

discharging rate, and excellent storage characteristic. Despite those significant key 

features, massive production of lithium-ion batteries had increased the global market 

anxiety towards the imminent exhaustion of lithium resources consequently to the 

arising of lithium precursor global price.      

 

The new pace of change in large-scale smart grid technology developments 

remarkably required a large-scale energy storage system. Therefore, economic cost 

reduction and renewable resources are twofold concerns required to manage optimum 


