MODIFIED ACTIVATED CARBON-BASED CATHODES USING COBALT TETRAMETHOXYPHENYLPORPHYRIN (COTMPP) AND GRAPHENE FOR ZINC-AIR BATTERY

RUSLINDA BINTI MD ALI

Thesis submitted to Centre of Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfillment of the requirements for the Degree of Doctor of Philosophy (Physics)

2020

ABSTRACT

This study proposed on the improvement of the performance of activated carbon (AC)-based electrodes by electrocatalyst doping and modifying the carbon support system for zinc-air battery (ZAB). Electrode or specifically known as air-cathode in ZAB is the key component that contributing to its performance. The catalyst was doped into carbon matrix following by pyrolysis process. Besides catalyst doping, a carbon support material also play the crucial role on the electrocatalytic performance. Combinations of two different carbon materials not only increase the specific surface area but also improve the electric conductivity. At first, different weight percent (wt.%) loading of cobalt tetramethoxyphenylporphyrin (CoTMPP) catalyst (AC-CoTMPP) were prepared using simple ultrasonication technique. The microstructure effects of CoTMPP addition on AC matrix or electrode materials were analysed using X-Ray Diffractometry (XRD), Fourier Transformed Raman spectroscopy (FT-RAMAN) and Field Emission Scanning Electron Microscopy (FESEM). Meanwhile the electrochemical performances of prepared electrodes involved cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) conducted at room temperature (25 ± 1 °C) using three-electrode system. The optimized experimental results from the CoTMPP composition were studied to determine the effect of heat treatment on structural and electrocatalytic activity of the AC-CoTMPP composites and electrodes at elevated temperatures known as pyrolysis process. The reduction peak current value of AC electrode with optimized content of CoTMPP (25 wt.% of CoTMPP loading and heat treatment of 800 °C) is -0.0455 mA. Although catalytic activity of heat-treated AC doped CoTMPP has shown an improvement, the obtained reduction peak current is still lower than that prepared electrode using platinum on carbon (Pt/C) catalyst (-0.0553 mA). Therefore, the proposed carbon-carbon composite through the combination of AC and graphene (Gr) as supports materials has become an effective strategy to enhance the structural morphology and electrochemical activity. This is due to the fact that Gr-AC composite not only enlarges the effective surface area of GrAC composite electrode but also provides a highly conductive graphitized surface thus increasing electrical conductivity. The reduction peak current and effective surface area of GrAC composite electrode has increased by 330 % and 108 % than that pure AC electrode, respectively. Subsequently, the electrode employing GrAC composite as support material doped CoTMPP catalyst has been explored to obtain the optimized structural and electrochemical properties. The heat treated GrAC-CoTMPP-25 wt.% electrode has the highest reduction peak current with -0.0653 mA, which are 36 % and 9 % higher than that heat-treated AC-CoTMPP-25 wt.% and GrAC electrodes, respectively. The Zn-air battery utilizing heat-treated GrAC-CoTMPP as cathode has the highest energy density with value of 122.65 Wh/g. The obtained air-cathode materials (heat treated GrAC-CoTMPP) outperforms commercial Pt/C in oxygen reduction reaction with greater reduction peak current value up to 13 %. When applied in ZAB, a high open- circuit voltage, excellent energy density, and satisfactory stability are achieved, implying that heat treated GrAC-CoTMPP cathode material has potential to replace platinum based catalyst.

ABSTRAK

Kajian ini mencadangkan penambahbaikan prestasi elektrod yang berasaskan karbon aktif (AC) dengan pendopan elektrokatalis dan mengubahsuai sistem sokongan karbon untuk bateri zink-udara (ZAB). Selain dari pemilihan logam zink sebagai bahan anod, elektrod atau dikenali sebagai katod udara di ZAB juga merupakan komponen penting yang menyumbang kepada prestasi ZAB. Prestasi elektrokatalitik katod udara ditingkatkan dengan memperkenalkan pemangkin logam peralihan ke dalam matriks karbon diikuti oleh proses pirolisis. Selain daripada pemilihan pendopan yang baik, bahan sokongan karbon yang stabil dengan luas permukaan spesifik yang tinggi dan kekonduksian elektrik yang baik juga memainkan peranan penting dalam meningkatkan prestasi elektrokatalitik bahan katod udara. Pada peringkat awal, pemangkin kobalt tetramethoxyphenylporphyrin (CoTMPP) dengan peratusan berat vang berbeza (wt.%) (AC-CoTMPP) disediakan menggunakan teknik ultrasonication yang ringkas. Selanjutnya, hasil eksperimen daripada dari komposisi CoTMPP yang dioptimumkan dikaji untuk meneliti kesan rawatan haba terhadap ciri-ciri struktur bahan komposit dan aktiviti elektrokatalitik elektrod (AC-CoTMPP) pada suhu-suhu yang berbeza yang dikenali sebagai proses pirolisis. Kesan pada mikrostruktur bahan elektrod dianalisis menggunakan Pembelauan Sinar-X (XRD), Spectroskopi Raman Fourier Transformed (FT-RAMAN) dan Mikroskopi Pengimbasan Pelepasan Medan (FESEM). Sementara itu, prestasi elektrokimia elektrod melibatkan voltammetri kitaran (CV) dan spektroskopi impedans elektrokimia (EIS) yang dijalankan pada suhu bilik (25 ± 1 °C) menggunakan sistem tiga elektrod. Nilai arus puncak pengurangan elektrod AC dengan kandungan CoTMPP yang dioptimumkan (25 wt.% berat CoTMPP dan rawatan haba 800 °C) adalah -0.0455 mA. Struktur morfologi dan aktiviti elektrokimia komposit AC-CoTMPP yang dioptimumkan ditingkatkan dengan mengubahsuai sistem bahan sokongan karbon. Gabungan AC dan graphene (Gr) bukan sahaja meningkatkan luas permukaan spesifik elektrod komposit GrAC tetapi juga memberikan permukaan grafit yang sangat konduktif sehingga meningkatkan kekonduksian elektrik. Nilai pengurangan puncak arus dan luas permukaan elektrod komposit GrAC telah meningkat masing-masing sebanyak 330 % dan 108 % daripada elektrod AC tulen itu. Oleh itu, elektrod yang menggunakan komposit GrAC sebagai bahan sokongan dan pemangkin CoTMPP sebagai elektrokatalis pendopan telah dieksplorasi untuk mendapatkan sifat struktur dan elektrokimia yang optimum. Elektrod GrAC-CoTMPP-25 wt.% yang telah dirawat mempunyai arus puncak pengurangan tertinggi iaitu -0.0653 mA, berbanding dengan elektrod AC-CoTMPP-25 wt.% dan GrAC yang telah dirawat, dengan peningkatan sebanyak 36 % dan 9 %. ZAB menggunakan GrAC-CoTMPP yang telah dirawat sebagai katod mempunyai nilai ketumpatan tenaga tertinggi dengan iaitu 122.65 Wh/g. Bahan katod udara yang diperoleh (GrAC-CoTMPP yang dirawat) mengatasi Pt/C komersial dalam tindak balas pengurangan oksigen dengan penurunan nilai arus puncak yang lebih tinggi iaitu sehingga 13 %. Apabila digunakan dalam ZAB, voltan litar terbuka tinggi, ketumpatan tenaga yang sangat baik, dan kestabilan yang memuaskan dicapai, menunjukkan bahawa bahan katod GrAC-CoTMPP yang dirawat berpotensi untuk menggantikan pemangkin berasaskan platinum.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah S.W.T for blessing me with good health and the strength to complete this challenging journey. First of all, I would like to express my gratitude to my main supervisor, Prof. Dr. Muhd ZuAzhan Yahya for giving me the opportunity to work under his supervision. I truly appreciate the freedom, time and his continuous support on this research. The gratitude extended to my co-supervisor, Dr. Oskar Hasdinor Hassan and the members of Ionic Material and Devices Research Laboratory (iMADE), UiTM especially Kak Masni, Kak Sherene and Ijat for providing the necessary facilities assistance in this laboratory.

I would like to thank Universiti Pertahanan Nasional Malaysia (UPNM) and Kementerian Pendidikan Tinggi Malaysia (KPM).

Last but not least, my PhD journey is solely possible due to the blessings, prayers, thoughts, understanding, encouragement and love from my beloved families and my best comrade, Sazwan and Maziidah. Special thanks to my mother, Puan Jarah for being a great motivation for me to finish this study.

"This thesis is dedicated to those who always been there to share the laughter, happiness, tears, disappointment and frustration"

iv

APPROVAL

The Examination Committee has met on 30th September 2020 to conduct the final examination of Ruslinda binti Md Ali on her degree thesis entitled 'Modified Activated Carbon-based Cathodes using Cobalt Tetramethoxyphenylporphyrin (CoTMPP) and Graphene for Zinc-Air Battery'.

The committee recommends that the student be awarded the Doctor of Philosophy (Physics).

Members of the Examination Committee were as follows.

Prof. Dr. Ong Keat Khim

Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Chairman)

Assoc. Prof. Dr. Norhana Abdul Halim

Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Ts. Dr. Mohd Azlan Mohd Ishak

Faculty of Applied Science Universiti Teknologi MARA (External Examiner)

Prof. Dr. Pramod Kumar Singh

School of Basic Sciences and Research Sharda University (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Doctor of Philosophy (Physics)**. The members of the Supervisory Committee were as follows.

Mejar Professor Ts. Dr. Muhd ZuAzhan bin Yahya

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Associate Professor Dr. –Ing Oskar Hasdinor bin Hassan

Faculty of Art and Design Universiti Teknologi MARA (Co-supervisor)

DECLARATION

Student's full name	: Ruslinda binti Md Ali
Date of birth	: 04 Julai 1987
Title	: Modified Activated Carbon-based Cathodes using Cobalt Tetramethoxyphenylporphyrin (CoTMPP) and Graphene for Zinc-Air Battery
Academic session	: June 2014 – June 2020

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

IC/Passport No.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

Note: *If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation stating the period and reasons for confidentiality and restriction. **Witness

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	iv
APPROVAL	v
APPROVAL	vi
DECLARATION	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	XX

CHAPTER ONE INTRODUCTION	1
1.1. Research Background: Electrochemical Energy Storage	1
1.2. Problem Statement	3
1.3. Research Objectives	5
1.4. Scope and Limitation of Research	5
1.5. Significance of Study	6

CHA	APTER T	WO LITERATURE REVIEW	8
2.1.	Introduct	tion	8
2.2.	Metal-Ai	ir Batteries	11
2.3.	Zinc-Air	Battery	13
2.4.	Air-Cath	ode Configuration	17
2.5.	Cathode	materials	19
	2.5.1.	Activated Carbon as Cathode Material	21
	2.5.2.	Graphene as Cathode Material	22
	2.5.3.	Carbon-Carbon Composite as Cathode Material	26

2.5.4.	Transition Metal Porphyrine-Based as Catalysts	27
2.5.5.	Carbon Doped Cobalt Tetramethoxylphenyl Porphyrin	30
	as Cathode Material	
2.6. Electrocl	nemical Study	33
2.7. Oxygen	Reduction Reaction of Cathode	37

CHAPTER	THREE METHODOLOGY	39
3.1. Introduction		39
3.2. Experim	ental Flow Chart	41
3.3. Samples	Preparation	42
3.3.1.	Materials and Equipment	42
3.3.2.	Preparation of AC-CoTMPP composite materials	43
3.3.3.	Preparation of Graphene-Activated Carbon Composite	44
	Materials	
3.3.4.	Preparation of GrAC-CoTMPP composite materials	44
3.4. Substrate and Binder Selection for Electrode Modification		45
3.4.1.	Preparation of Glassy Carbon Electrode	45
3.4.2.	Preparation ITO-modified Cathode	46
3.5. Fabrication of Zinc-Air Battery		47
3.6. Samples Characterization		48
3.6.1.	Field Emission Scanning Electron Microscopy with	40
	EDX Analysis	49
3.6.2.	X-Ray Diffractometry	49
3.6.3.	Fourier Transformed Raman Spectroscopy	51
3.7. Electrochemical Analysis of Cathode and Zinc-Air Battery		52
3.7.1.	Cyclic Voltammetry and Impedance Spectroscopy	52
3.7.2.	Open Circuit Voltage and Discharge Profiles	53

CHAPTER FOUR THE EFFECT OF CoTMPP COMPOSITION	55
ON THE STRUCTURAL AND ELECTROCHEMICAL	
PROPERTIES OF AC-BASED CATHODE	
4.1. Introduction	55
4.2. Structural Analyses of Cathode Materials	56
4.3. Electrochemical Analysis of Cathodes	61
4.3.1. Substrate and Binder Selection	61
4.3.2. Performance of the ITO-modified AC and AC-CoTMPP	66
Cathodes	
4.4. Summary	69
CHAPTER FIVE THE EFFECT OF HEAT TREATMENT ON	71
THE STRUCTURAL AND ELECTROCHEMICAL	
PROPERTIES OF ITO-MODIFIED AC-CoTMPP CATHODES	
5.1. Introduction	71
5.2. Microstructural Analysis of Cathode Materials	72
5.3. Performance of the ITO-modified AC-CoTMPP Cathodes	75
5.4. Summary	82
CHAPTER SIX GRAPHENE/ACTIVATED CARBON	84
COMPOSITE AS CATHODE MATERIAL	
6.1. Introduction	84
6.2. Microstructural Analysis of Cathode Materials	85
6.3. Performance of the of GrAC Composite Cathodes	92
6.4. The Effect of CoTMPP Catalyst on the Structural and	96
Electrochemical Properties of GrAC Composite Cathode	
6.5. Summary	106

CHAPTER SEVEN ELECTROCHEMICAL PERFORMANCES	108
OF ZINC-AIR BATTERY	
7.1. Introduction	108
7.2. Open Circuit Voltage	109
7.3. Discharge characteristics	110
7.4. Impedance Spectroscopy	113
7.5. Summary	115
CHAPTER EIGHT CONCLUSION AND	116
RECOMMENDATION	
8.1. Conclusion	116
8.2. Recommendation	118
REFERENCES	120
APPENDICES	130
BIODATA OF STUDENT	139

BIODATA OF STUDENT	139
LIST OF PUBLICATIONS	139

LIST OF TABLES

Table 2.1	Battery characteristics	9
Table 2.2	Theoretical specific energy of metal-air batteries*	12
Table 3.1	Materials and equipment used	42
Table 3.2	The compositions of prepared cathode materials of AC-	43
	CoTMPP	
Table 3.3	The compositions of prepared cathode materials of heat	44
	treated AC-CoTMPP	
Table 4.1	XRD parameters of pure AC and AC-CoTMPP composites	61
Table 4.2	The prepared cathode with their substrate and binder	62
Table 4.3	Cyclic voltammograms parameters of prepared cathodes at	63
	scan rate of 10 mV/s	
Table 4.4	The ITO-modified cathode using AC-CoTMPP as cathode	66
	materials	
Table 4.5	Parameters of redox peak current of ITO-modified cathodes	68
Table 5.1	The prepared cathode material of AC-CoTMPP-25 wt.% at	72
	elevated heat treatment and their abbreviations	
Table 5.2	The relative intensity ratio (I_D/I_G) of cathode materials	74
Table 5.3	Cyclic voltammogram parameters of ITO-modified AC-	77
	CoTMPP-25 wt. % at various heat treatments at scan rate of	
	10 mV/s	
Table 5.4	Slopes and effective surface area of ITO-modified AC-	79
	CoTMPP-25wt.% cathodes at different heat treatment	
	temperature	
Table 5.5	CV parameters of ITO-modified cathodes at scan rate of 10	79
	mV/s	
Table 5.6	Equivalent circuit parameters of ITO-modified cathodes	81
Table 6.1	The prepared cathode materials and their abbreviations	85
Table 6.2	XRD parameters of cathode materials	89
Table 6.3	The relative intensity ratio (I_D/I_G) of cathode materials	91
Table 6.4	Slopes and effective surface area of ITO-modified cathodes	94
Table 6.5	The relative intensity ratio (I_D/I_G) of cathode materials	101

Table 6.6	Slopes and effective surface area of ITO-modified cathodes	103
Table 6.7	Equivalent circuits parameters of ITO-modified cathodes	105
Table 7.1	Zn-air batteries and their abbreviations	108
Table 7.2	Specific discharge capacity of Zn-air battery at 1 μ A/cm ²	111
	current density	
Table 7.3	Specific energy of Zn-air battery at 1 μ A/cm ² current density	113

LIST OF FIGURES

Figure 2.1	Applications of metal-air batteries as energy source and	10
	storage systems (Wang et al. (2019) [27])	
Figure 2.2	Schematic representation of the structure and operation	11
	principle of a metal-air battery and the liquid-gas-solid	
	(catalyst) interface in the air-cathode (Cheng and Chen	
	(2012) [30])	
Figure 2.3	The working principle of Zn-air battery and their half-cell	15
	and overall reaction	
Figure 2.4	Schematic polarization curves of Zn-air battery. The	16
	equilibrium potential of the zinc-air battery (black line) is	
	1.65 V, but the practical voltage (red line) in discharge is	
	lower than 1.65 V due to the sluggish ORR. A large potential	
	is needed to charge Zn-air battery, higher than the	
	equilibrium potential (blue line) (Lee et al. (2011) [43])	
Figure 2.5	Working principle of air-cathode (Eom et al. (2006) [50])	18
Figure 2.6	Schematic diagram of air-cathode	18
Figure 2.7	Molecular structure of graphene	22
Figure 2.8	Comparison of packing density of different electrode	25
	materials (Zheng et.al (2014) [59])	
Figure 2.9	Effect of catalyst in reaction rate	28
Figure 2.10	Structures of Pc, TPP and TMPP complexes	30
Figure 2.11	Heat treatment process of CoTMPP compound	32
Figure 2.12	Typical cyclic voltammogram plot	34
Figure 2.13	Electrochemical impedance spectra of a Randles circuit in a	36
	schematic Nyquist (left panel) and Bode plot (right panel)	
Figure 3.1	Preparation of cathode materials	41
Figure 3.2	Characterization of prepared cathode and fabricated Zn-air	41
	battery	
Figure 3.3	Preparation of glassy carbon electrode	46
Figure 3.4	Preparation of ITO-modified cathode	47

Figure 3.5	Schematic diagram of air-cathode and Zn-air battery in coin-	48
	type cell	
Figure 3.6	Prepared samples for FESEM analysis	49
Figure 3.7	Schematic diagram of Bragg's law	50
Figure 3.8	Schematic diagram of X-ray diffractometry	51
Figure 3.9	Configuration setup of three-electrode cell for electrode	53
	electrochemical measurement	
Figure 3.10	Battery testing setup using WBCS Battery Cycler software	54
Figure 4.1	FESEM images of (a) pure AC, (b) CoTMPP, (c) AC-	57
	CoTMPP-5wt.%, (d) AC-CoTMPP-10wt.%, (e) AC-	
	CoTMPP-15wt.%, (f) AC-CoTMPP-20wt.%, (g) AC-	
	CoTMPP-25wt.% and AC-CoTMPP-30wt.%	
Figure 4.2	EDX spectra and element percentage of (a) pure AC, (b)	58
	CoTMPP, (c) AC-CoTMPP-5wt.%, (d) AC-CoTMPP-	
	10wt.%, (e) AC-CoTMPP-15wt.%, (f) AC-CoTMPP-20wt.%,	
	(g) AC-CoTMPP-25wt.% and AC-CoTMPP-30wt.%	
Figure 4.3	XRD pattern of (a) pure AC, (b) CoTMPP, (c) AC-CoTMPP-	60
	5wt.%, (d) AC-CoTMPP-10wt.%, (e) AC-CoTMPP-15wt.%,	
	(f) AC-CoTMPP-20wt.%, (g) AC-CoTMPP-25wt.% and AC-	
	CoTMPP-30wt.%	
Figure 4.4	Cyclic voltammograms of (a) Pt/C-PTFE and (b) Pt/C-Nafion	63
	coated on glassy carbon surface at scan rate of 10 mV/s	
Figure 4.5	Cyclic voltammograms of (a) Pt/C-PTFE and (b) Pt/C-Nafion	64
	coated on ITO glass substrate at scan rate of 10 mV/s	
Figure 4.6	Nyquist plots of (a) Pt/C on (a) glassy carbon electrode and	65
	(b) ITO glass substrate	
Figure 4.7	Cyclic voltammograms of ITO/AC and ITO/(AC-CoTMPP)	67
	at various CoTMPP loading (5-30 wt.%) at scan rate of 10	
	mV/s	
Figure 4.8	Cyclic voltammograms of (a) ITO/AC (b) AC/(AC-	69
	CoTMPP-25wt.%) and (c) ITO/(Pt/C) cathodes at scan rate of	
	10 mV/s	

Figure 5.1	FT-Raman spectra of AC- CoTMPP-25 wt.% at elevated heat	74
	treatments. The corresponding FT-Raman spectra for AC,	
	CoTMPP and AC- CoTMPP-25 wt.% without heat treatment	
	is also included for comparisons	
Figure 5.2	Cyclic voltammograms of modified AC-CoTMPP-25 wt. %	76
	at scan rate of 10 mV/s	
Figure 5.3	Cyclic voltammograms of (a) ITO/NoHT, (b) ITO/HT200,	78
	(c) ITO/HT450, (d) ITO/HT650, (e) ITO/HT750, (f)	
	ITO/HT800, (g) ITO/HT950 and (h) $i_p vs v^{1/2}$	
Figure 5.4	Cyclic voltammograms of (a) ITO/(Pt/C) and (b) ITO/NoHT	80
	and (c) ITO/HT800 cathodes at scan rate of 10 mV/s	
Figure 5.5	Nyquist plots of (a) ITO/NoHT and (b) ITO/HT800 with	81
	inset of their equivalent circuit	
Figure 6.1	FESEM images of Gr, AC and GrAC (left panel). EDX	86
	spectrum and element percentage of Gr, AC, Gr-AC (right	
	panel)	
Figure 6.2	XRD pattern of Gr, AC and GrAC	88
Figure 6.3	FT-RAMAN spectra of (a) AC, (b) Gr and (c) GrAC	90
Figure 6.4	FT-Raman spectrum of graphene powder. Black lines	91
	indicate experimental spectrum while red and green lines	
	indicate the stimulated Lorentzian fits and fit peaks	
	components to the experimental spectrum, respectively	
Figure 6.5	Cyclic voltammograms of AC at different scan rates with the	93
	inset of $i_p vs v^{1/2}$	
Figure 6.6	Nyquist plot of (a) ITO/Gr, (b) ITO/AC and (c) ITO/GrAC at	95
	frequency range of 0.01 Hz to 10 kHz	
Figure 6.7	FESEM images of (a) GrAC, (b) GrAC-CoTMPP-NoHT and	97
	(c) GrAC-CoTMPP-HT800 (left panel) and their EDX	
	spectra (right panel)	
Figure 6.8	XRD spectra of (a) GrAC, (b) CoTMPP, (c) GrAC-CoTMPP-	99
	NoHT and (d) GrAC-CoTMPP-HT800	
Figure 6.9	FT-RAMAN spectra of (a) GrAC, (b) CoTMPP, (c) GrAC-	100
	CoTMPP-NoHT and (d) GrAC-CoTMPP-HT800	

Figure 6.10	Cyclic voltammograms of (a) GrAC, (b) GrAC-CoTMPP-	102
	NoHT and (c) GrAC-CoTMPP-HT800 at different scan rates	
	with the their reversibility plots ($i_p vs v^{1/2}$)	
Figure 6.11	Cyclic voltammograms of (a) ITO/HT800, (b) ITO/(Pt/C), (c)	104
	ITO/GrAC and (d) ITO/(GrAC-CoTMPP-HT800) at scan	
	rate of 10 mV/s	
Figure 6.12	Nyquist plot of (a) ITO/HT800, (b) ITO/(Pt/C), (c)	105
	ITO/GrAC and (d) ITO/(GrAC-CoTMPP-HT800) with inset	
	of their equivalent circuit at frequency range of 0.01 Hz to 10	
	kHz	
Figure 7.1	Open-circuit voltage of fabricated Zn-air batteries	109
Figure 7.2	Discharge curves of fabricated Zn-air batteries at 1 μ A/cm ²	110
	current density	
Figure 7.3	Specific capacity plots of fabricated Zn-air batteries at 1	112
	µA/cm ² current density	
Figure 7.4	EIS plots of ZAB/(GrAC-CoTMPP-HT800)/DL cell	114

LIST OF ABBREVIATIONS

AC	Activated Carbon
Ag	Silver
Al	Aluminium
Ca	Calcium
СВ	Carbon Black
CC	Current Collector
Cd	Cadmium
C _{DL}	Interfacial Capacitance
Cl	Chloride
CE	Counter Electrode
CL	Catalyst Layer
CNT	Carbon Nanotube
CoTMPP	Cobalt Tetramethoxyphenylporphyrin
CPE	Constant Phase Element
Cu	Copper
CV	Cyclic Voltammetry
DL	Diffusion Laver
EDX	Energy-Dispersive X-Ray
EES	Electrochemical Energy Storage
EIS	Electrochemical Impedance Spectroscopy
Fe	Iron
FESEM	Field Emission Scanning Electron Microscopy
FeTMPP	Iron Tetramethoxyphenylporphyrin
FT-RAMAN	Fourier Transformed Raman Spectroscopy
FWHM	Full Width at Half Maximum
GC	Glass Carbon
GDL	Gas Diffusion Layer
GO	Graphene Oxide
Gr	Graphene
GrAC	Graphene-Activated Carbon
НОМО	Highest Occupied Molecular Orbital
HT	Heat Treatment
ITO	Indium Tin Oxide
Κ	Potassium
Li	Lithium
LUMO	Lowest Unoccupied Molecular Orbital
LSV	Linear Sweep Voltammetry
Mg	Magnesium
Na	Sodium
Ni	Nickel
OCV	Open Circuit Voltage
ОН	Hydroxide
ORR	Oxygen Reduction Reaction
Pt	Platinum
Pt/C	Platinum on Carbon
PTFE	Polytetrafluoroethylene

R _{CT}	Electron-Transfer Resistance
RE	Reference Electrode
R _s	Solution Resistance
R _W	Warburg Diffusion Element
r^2	Linear Regression
SSA	Specific Surface Area
SWCNT	Single Wall Carbon Nanotube
XRD	X-Ray Diffraction
WE	Working Electrode
Wt.%	Weight Percentage
ZAB	Zinc-Air Battery
Zn	Zinc
Z_W	Warburg Impedance

LIST OF SYMBOLS

°C	Degree Celsius
μl	Microliter
Ω	Ohm
λ	Wavelength
heta	Half-Width Peak
Α	Area
A	Amphere
С	Molar Concentration
cm	Centimeter
d	Interlayer Spacing
D	Diffusion Coefficient
E	Potential
E _A	Activation Energy
E_{pa}	Anodic Peak Potential
\overline{E}_{pc}	Cathodic Peak Potential
i	Current
I_{pa}	Anodic Peak Height
I_{pc}	Cathodic Peak Height
h	Hour
k	Slope
kg	Kilogram
min	Minute
mg	Milligram
ml	Milliliter
nm	Nanometer
Q	Charge
t	Time
V	Scan Rate
V	Volt

CHAPTER ONE

INTRODUCTION

1.1 Research Background: Electrochemical Energy Storage

Developing clean and renewable energy technologies are one of the major challenges that researchers face worldwide. The increasing market size and advancement in microelectronic devices demand for higher energy density, safe, low cost and reliable power sources. Among of the alternatives to address the above issues is with the development of electrochemical energy storage such as batteries and supercapacitors. Solid state metal-air battery technologies have been reported to possess excellent theoretical specific energy density [1], [2] and longer cycle life and have been used as a key component in portable microelectronic devices for the mass market such as watches and hearing aids. Zn-air batteries have been considered to be one of most promising energy storage and conversion technologies. Bifunctional oxygen catalysts with outstanding electrocatalytic activities are critical to the efficiency of Zn-air batteries. In the recent years, extensive researches have been devoted to exploring, designing, and preparing cost-effective and high-performance bifunctional electrocatalysts in alkaline media, such as transition-metal oxides and carbon-based materials.

Electrode materials have a vital role in energy production, conversion and storage. As the cost and performance of metal-air battery greatly influenced by the electrode, the exploration of new electrode materials and designation of efficient electrode architectures is inevitable. Although well-known platinum catalyst and Nafion binder provide desired electrochemical energy storage device performance, the high cost and scarcity materials hindered its application in industrial scale. For the past decade, there are many efforts by researchers worldwide to design electrode without using platinum-based catalyst and Nafion binder by replacing platinum with cheaper metal catalysts while Nafion binder was replaced with polytetrafluoroethylene (PTFE) binder which is less expensive. Although catalyst metals such as metal oxides [3]–[5], silver [6], [7], perovskites [8], [9] and transition metal N₄-macrocyclic compounds [10]–[13] have been extensively developed as cathode material, the performance of these materials are still cannot surpass the performance of noble-metal materials. In order to encounter this matter, combination of two or more different carbon materials have been previously reviewed and analysed as carbon-carbon composite or modified carbon support materials [14]–[16] for these metal catalysts. These carbon-carbon composites have demonstrated an improvement in the electrochemical performances of cathode due to high specific surface area and excellent electrical conductivity [17]–[19].

In this thesis, the doping of cobalt tetramethoxyphenylporphyrin (CoTMPP) as catalyst and carbon-carbon composite as support material (graphene-activated carbon) were leveraged to achieve better electrochemical activity for zinc-air battery (ZAB) application. The framework in this work is constructed based on current problems encountered in development of cathode which are high cost material and

inadequate energy density with respect to cathode material selection, structural analyses and electrochemical performances, as discussed in the following Section 1.2.

1.2 Problem Statement

The main purpose of this study is to enhance the performance of Zn-air battery (ZAB) by improving the electrochemical activity of air-cathode. ZAB becomes the center of attention as alternatives to Li-ion battery (LIB) as it possesses comparable specific energy density to LIB and at the same time easier in handling process, fully recyclable and lesser in cost [20] compared to LIB. The crucial component contributing to high energy density for metal-air battery is air-cathode. Although noble metal-based electrode such as platinum, ruthenium and iridium possess excellent energy density but their high cost, poor durability and slow electron-transfer kinetic [21] restricted application their in large-scale commercialization [22]. Therefore, this research project will explore the potential of graphene-activated carbon (GrAC) composite doped with transition metal catalyst as an active cathode material for ZAB.

Carbon-carbon composite materials have drawn much attention as support material as well as metal-free catalysts for ORR due to their superior electrocatalytic activities along with low cost, good durability and environmental benignity. The studies of carbon materials (e.g., carbon black, activated carbon, graphite, carbon nanotube and graphene) doped with transition metal porphyrin (e.g., CoTMPP and FeTMPP) have shown to possess pronounced catalytic activity for ORR [23] motivated the exploration in developing novel carbon-carbon composite materials doped with transition metal porphyrin catalyst. The development of carbon-carbon composite (GrAC) doped with transition metal porphyrin (CoTMPP) catalyst as active cathode material is expected to greatly improve the electrocatalytic performance of oxygen reduction reaction (ORR) of air-cathode and increases the energy density of Zn-air battery. CoTMPP catalyst is considered as promising material to replace platinum-based catalyst considering the cost and reliability.

There are three approaches used in this research to enhance the cathode materials properties, the first approach is to determine the best composition of CoTMPP catalyst in AC-CoTMPP composite by varying the CoTMPP composition (5, 10, 15, 20, 25 and 30 wt. %). The second approach is to find out the optimum temperature for electrochemical activities. The untreated sample was compared to heat treated samples at 200, 450, 650, 750, 800 and 950 °C to study the effect of heat treatment on AC-CoTMPP composites. The last approach is modifying the carbons supported using carbon-carbon composite (AC and Gr) and doped with CoTMPP catalysts. To the best of our knowledge, there is only a little report on graphene-activated carbon (Gr-AC) composite as supports material for CoTMPP-based catalyst. Examining the effect of GrAC composite on the structural properties and its electrochemical performances may help in discovering better cathode material for application in Zn-air battery.

1.3 Research Objectives

This study aims to achieve following objectives:

- To determine the effect of CoTMPP composition on AC-based electrode on the structural properties (FESEM-EDX and XRD) and its electrochemical performances (CV and EIS) as cathodes.
- To determine the effect of heat treatment (200, 450, 650, 750, 800, 950 °C) on the optimized AC-CoTMPP composite on the structural properties (FT-RAMAN) and its electrochemical performances (CV and EIS) as cathodes.
- iii. To appraise the effect GrAC composite on the structural properties (FESEM-EDX, XRD and FT-RAMAN) and its electrochemical performances (CV and EIS) as cathodes.
- iv. **To evaluate** the electrochemical performances (OCV, discharge profile and EIS) of prepared cathodes in fabricated Zn-air battery system.

1.4 Scope and Limitation of Research

This study focuses on developing AC-based cathodes using CoTMPP catalyst and Gr. The scope and limitations of the research are as follows:

- i. AC-CoTMPP composites were limited to 30 wt.% with 5 wt.% increments of CoTMPP composition relative to AC.
- ii. The optimized AC-CoTMPP composition is subjected to heat treatment with temperature ranging from 200 to 950 °C.
- iii. GrAC composite was prepared in weight ratio of 9:1.