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ABSTRACT 

 

This study proposed on the improvement of the performance of activated carbon 

(AC)-based electrodes by electrocatalyst doping and modifying the carbon support 

system for zinc-air battery (ZAB). Electrode or specifically known as air-cathode in 

ZAB is the key component that contributing to its performance. The catalyst was 

doped into carbon matrix following by pyrolysis process. Besides catalyst doping, a 

carbon support material also play the crucial role on the electrocatalytic 

performance. Combinations of two different carbon materials not only increase the 

specific surface area but also improve the electric conductivity. At first, different 

weight percent (wt.%) loading of cobalt tetramethoxyphenylporphyrin (CoTMPP) 

catalyst (AC-CoTMPP) were prepared using simple ultrasonication technique. The 

microstructure effects of CoTMPP addition on AC matrix or electrode materials 

were analysed using X-Ray Diffractometry (XRD), Fourier Transformed Raman 

spectroscopy (FT-RAMAN) and Field Emission Scanning Electron Microscopy 

(FESEM). Meanwhile the electrochemical performances of prepared electrodes 

involved cyclic voltammetry (CV) and electrochemical impedance spectroscopy 

(EIS) conducted at room temperature (25 ± 1 °C) using three-electrode system. The 

optimized experimental results from the CoTMPP composition were studied to 

determine the effect of heat treatment on structural and electrocatalytic activity of 

the AC-CoTMPP composites and electrodes at elevated temperatures known as 

pyrolysis process. The reduction peak current value of AC electrode with optimized 

content of CoTMPP (25 wt.% of CoTMPP loading and heat treatment of 800 °C) is 

−0.0455 mA. Although catalytic activity of heat-treated AC doped CoTMPP has 

shown an improvement, the obtained reduction peak current is still lower than that 

prepared electrode using platinum on carbon (Pt/C) catalyst (−0.0553 mA). 

Therefore, the proposed carbon-carbon composite through the combination of AC 

and graphene (Gr) as supports materials has become an effective strategy to enhance 

the structural morphology and electrochemical activity. This is due to the fact that 

Gr-AC composite not only enlarges the effective surface area of GrAC composite 

electrode but also provides a highly conductive graphitized surface thus increasing 

electrical conductivity. The reduction peak current and effective surface area of 

GrAC composite electrode has increased by 330 % and 108 % than that pure AC 

electrode, respectively. Subsequently, the electrode employing GrAC composite as 

support material doped CoTMPP catalyst has been explored to obtain the optimized 

structural and electrochemical properties. The heat treated GrAC-CoTMPP-25 wt.% 

electrode has the highest reduction peak current with −0.0653 mA, which are 36 % 

and 9 % higher than that heat-treated AC-CoTMPP-25 wt.% and GrAC electrodes, 

respectively. The Zn-air battery utilizing heat-treated GrAC-CoTMPP as cathode has 

the highest energy density with value of 122.65 Wh/g. The obtained air-cathode 

materials (heat treated GrAC-CoTMPP) outperforms commercial Pt/C in oxygen 

reduction reaction with greater reduction peak current value up to 13 %. When 

applied in ZAB, a high open- circuit voltage, excellent energy density, and 

satisfactory stability are achieved, implying that heat treated GrAC-CoTMPP 

cathode material has potential to replace platinum based catalyst.  
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ABSTRAK 

 

Kajian ini mencadangkan penambahbaikan prestasi elektrod yang berasaskan karbon 

aktif (AC) dengan pendopan elektrokatalis dan mengubahsuai sistem sokongan 

karbon untuk bateri zink-udara (ZAB). Selain dari pemilihan logam zink sebagai 

bahan anod, elektrod atau dikenali sebagai katod udara di ZAB juga merupakan 

komponen penting yang menyumbang kepada prestasi ZAB. Prestasi elektrokatalitik 

katod udara ditingkatkan dengan memperkenalkan pemangkin logam peralihan ke 

dalam matriks karbon diikuti oleh proses pirolisis. Selain daripada pemilihan 

pendopan yang baik, bahan sokongan karbon yang stabil dengan luas permukaan 

spesifik yang tinggi dan kekonduksian elektrik yang baik juga memainkan peranan 

penting dalam meningkatkan prestasi elektrokatalitik bahan katod udara. Pada 

peringkat awal, pemangkin kobalt tetramethoxyphenylporphyrin (CoTMPP) dengan 

peratusan berat yang berbeza (wt.%) (AC-CoTMPP) disediakan menggunakan 

teknik ultrasonication yang ringkas. Selanjutnya, hasil eksperimen daripada dari 

komposisi CoTMPP yang dioptimumkan dikaji untuk meneliti kesan rawatan haba 

terhadap ciri-ciri struktur bahan komposit dan aktiviti elektrokatalitik elektrod (AC-

CoTMPP) pada suhu-suhu yang berbeza yang dikenali sebagai proses pirolisis. 

Kesan pada mikrostruktur bahan elektrod dianalisis menggunakan Pembelauan 

Sinar-X (XRD), Spectroskopi Raman Fourier Transformed (FT-RAMAN) dan 

Mikroskopi Pengimbasan Pelepasan Pelepasan Medan (FESEM). Sementara itu, 

prestasi elektrokimia elektrod melibatkan voltammetri kitaran (CV) dan spektroskopi 

impedans elektrokimia (EIS) yang dijalankan pada suhu bilik (25 ± 1 °C) 

menggunakan sistem tiga elektrod. Nilai arus puncak pengurangan elektrod AC 

dengan kandungan CoTMPP yang dioptimumkan (25 wt.% berat CoTMPP dan 

rawatan haba 800 °C) adalah −0.0455 mA. Struktur morfologi dan aktiviti 

elektrokimia komposit AC-CoTMPP yang dioptimumkan ditingkatkan dengan 

mengubahsuai sistem bahan sokongan karbon. Gabungan AC dan graphene (Gr) 

bukan sahaja meningkatkan luas permukaan  spesifik elektrod komposit GrAC tetapi 

juga memberikan permukaan grafit yang sangat konduktif sehingga meningkatkan 

kekonduksian elektrik. Nilai pengurangan puncak arus dan luas permukaan elektrod 

komposit GrAC telah meningkat masing-masing sebanyak 330 % dan 108 % 

daripada elektrod AC tulen itu. Oleh itu, elektrod yang menggunakan komposit 

GrAC sebagai bahan sokongan dan pemangkin CoTMPP sebagai elektrokatalis 

pendopan telah dieksplorasi untuk mendapatkan sifat struktur dan elektrokimia yang 

optimum. Elektrod GrAC-CoTMPP-25 wt.% yang telah dirawat mempunyai arus 

puncak pengurangan tertinggi iaitu −0.0653 mA, berbanding dengan elektrod AC-

CoTMPP-25 wt.% dan GrAC yang telah dirawat, dengan peningkatan sebanyak 36 

% dan 9 %. ZAB menggunakan GrAC-CoTMPP yang telah dirawat sebagai katod 

mempunyai nilai ketumpatan tenaga tertinggi dengan iaitu 122.65 Wh/g. Bahan 

katod udara yang diperoleh (GrAC-CoTMPP yang dirawat) mengatasi Pt/C 

komersial dalam tindak balas pengurangan oksigen dengan penurunan nilai arus 

puncak yang lebih tinggi iaitu sehingga 13 %. Apabila digunakan dalam ZAB, voltan 

litar terbuka tinggi, ketumpatan tenaga yang sangat baik, dan kestabilan yang 

memuaskan dicapai, menunjukkan bahawa bahan katod GrAC-CoTMPP yang 

dirawat berpotensi untuk menggantikan pemangkin berasaskan platinum. 
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CHAPTER ONE 

 

 

INTRODUCTION 

 

 

1.1 Research Background: Electrochemical Energy Storage 

 

Developing clean and renewable energy technologies are one of the major 

challenges that researchers face worldwide. The increasing market size and 

advancement in microelectronic devices demand for higher energy density, safe, low 

cost and reliable power sources. Among of the alternatives to address the above 

issues is with the development of electrochemical energy storage such as batteries 

and supercapacitors. Solid state metal-air battery technologies have been reported to 

possess excellent theoretical specific energy density [1], [2] and longer cycle life and 

have been used as a key component in portable microelectronic devices for the mass 

market such as watches and hearing aids. Zn-air batteries have been considered to be 

one of most promising energy storage and conversion technologies. Bifunctional 

oxygen catalysts with outstanding electrocatalytic activities are critical to the 

efficiency of Zn-air batteries. In the recent years, extensive researches have been 

devoted to exploring, designing, and preparing cost-effective and high-performance 

bifunctional electrocatalysts in alkaline media, such as transition-metal oxides and 

carbon-based materials.  
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Electrode materials have a vital role in energy production, conversion and 

storage. As the cost and performance of metal-air battery greatly influenced by the 

electrode, the exploration of new electrode materials and designation of efficient 

electrode architectures is inevitable. Although well-known platinum catalyst and 

Nafion binder provide desired electrochemical energy storage device performance, 

the high cost and scarcity materials hindered its application in industrial scale. For 

the past decade, there are many efforts by researchers worldwide to design electrode 

without using platinum-based catalyst and Nafion binder by replacing platinum with 

cheaper metal catalysts while Nafion binder was replaced with 

polytetrafluoroethylene (PTFE) binder which is less expensive. Although catalyst 

metals such as metal oxides [3]–[5], silver [6], [7], perovskites [8], [9] and transition 

metal N4-macrocyclic compounds [10]–[13] have been extensively developed as 

cathode material, the performance of these materials are still cannot surpass the 

performance of noble-metal materials. In order to encounter this matter, combination 

of two or more different carbon materials have been previously reviewed and 

analysed as carbon-carbon composite or modified carbon support materials [14]–[16] 

for these metal catalysts. These carbon-carbon composites have demonstrated an 

improvement in the electrochemical performances of cathode due to high specific 

surface area and excellent electrical conductivity [17]–[19]. 

 

 In this thesis, the doping of cobalt tetramethoxyphenylporphyrin (CoTMPP) 

as catalyst and carbon-carbon composite as support material (graphene-activated 

carbon) were leveraged to achieve better electrochemical activity for zinc-air battery 

(ZAB) application. The framework in this work is constructed based on current 

problems encountered in development of cathode which are high cost material and 
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inadequate energy density with respect to cathode material selection, structural 

analyses and electrochemical performances, as discussed in the following Section 

1.2. 

 

1.2 Problem Statement 

 

 The main purpose of this study is to enhance the performance of Zn-air 

battery (ZAB) by improving the electrochemical activity of air-cathode. ZAB 

becomes the center of attention as alternatives to Li-ion battery (LIB) as it possesses 

comparable specific energy density to LIB and at the same time easier in handling 

process, fully recyclable and lesser in cost [20] compared to LIB. The crucial 

component contributing to high energy density for metal-air battery is air-cathode. 

Although noble metal-based electrode such as platinum, ruthenium and iridium 

possess excellent energy density but their high cost, poor durability and slow 

electron-transfer kinetic [21] restricted their application in large-scale 

commercialization [22]. Therefore, this research project will explore the potential of 

graphene-activated carbon (GrAC) composite doped with transition metal catalyst as 

an active cathode material for ZAB. 

 

 Carbon-carbon composite materials have drawn much attention as support 

material as well as metal-free catalysts for ORR due to their superior electrocatalytic 

activities along with low cost, good durability and environmental benignity. The 

studies of carbon materials (e.g., carbon black, activated carbon, graphite, carbon 

nanotube and graphene) doped with transition metal porphyrin (e.g., CoTMPP and 

FeTMPP) have shown to possess pronounced catalytic activity for ORR [23] 
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motivated the exploration in developing novel carbon-carbon composite materials 

doped with transition metal porphyrin catalyst. The development of carbon-carbon 

composite (GrAC) doped with transition metal porphyrin (CoTMPP) catalyst as 

active cathode material is expected to greatly improve the electrocatalytic 

performance of oxygen reduction reaction (ORR) of air-cathode and increases the 

energy density of Zn-air battery. CoTMPP catalyst is considered as promising 

material to replace platinum-based catalyst considering the cost and reliability.  

 

 There are three approaches used in this research to enhance the cathode 

materials properties, the first approach is to determine the best composition of 

CoTMPP catalyst in AC-CoTMPP composite by varying the CoTMPP composition 

(5, 10, 15, 20, 25 and 30 wt. %). The second approach is to find out the optimum 

temperature for electrochemical activities. The untreated sample was compared to 

heat treated samples at 200, 450, 650, 750, 800 and 950 °C to study the effect of heat 

treatment on AC-CoTMPP composites. The last approach is modifying the carbons 

supported using carbon-carbon composite (AC and Gr) and doped with CoTMPP 

catalysts. To the best of our knowledge, there is only a little report on graphene-

activated carbon (Gr-AC) composite as supports material for CoTMPP-based 

catalyst. Examining the effect of GrAC composite on the structural properties and its 

electrochemical performances may help in discovering better cathode material for 

application in Zn-air battery. 
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1.3 Research Objectives 

 

This study aims to achieve following objectives:  

i. To determine the effect of CoTMPP composition on AC-based electrode on 

the structural properties (FESEM-EDX and XRD) and its electrochemical 

performances (CV and EIS) as cathodes.  

ii. To determine the effect of heat treatment (200, 450, 650, 750, 800, 950 °C) on 

the optimized AC-CoTMPP composite on the structural properties (FT-

RAMAN) and its electrochemical performances (CV and EIS) as cathodes. 

iii. To appraise the effect GrAC composite on the structural properties (FESEM-

EDX, XRD and FT-RAMAN) and its electrochemical performances (CV and 

EIS) as cathodes. 

iv. To evaluate the electrochemical performances (OCV, discharge profile and 

EIS) of prepared cathodes in fabricated Zn-air battery system. 

 

1.4 Scope and Limitation of Research 

 

This study focuses on developing AC-based cathodes using CoTMPP catalyst and 

Gr. The scope and limitations of the research are as follows: 

i. AC-CoTMPP composites were limited to 30 wt.% with 5 wt.% increments of 

CoTMPP composition relative to AC. 

ii. The optimized AC-CoTMPP composition is subjected to heat treatment with 

temperature ranging from 200 to 950 °C. 

iii. GrAC composite was prepared in weight ratio of 9:1. 


