PERFORMANCE OF HYBRID STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO AIR BLAST LOADING

MOHAMMED ALIAS YUSOF

Thesis Submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in the fulfillment of the Requirements for the Degree of Philosophy

SEPT 2012

ABSTRACT

In Malaysia, most of the buildings are constructed using reinforced concrete. The main problem with the reinforced concrete is that it has a low tensile strength and it's a brittle material. When subjected to blast loading or attack by the terrorist it will be damaged badly and also cause fragmentation. The fragmentation can lead to substantial injuries to personnel, causing loss of life and also damage to the surrounding area. Therefore, there is need to enhance the capability of the concrete to resist blast loading from any kind of attack and also explosion. Previous research on the behavior of single fibres reinforced concrete under blast loading found that steel fibre has the potential to be used in the blast resistance concrete material. However studies show that the use of a single fibre in the mix improved the mechanical properties of the concrete to a limited level. Many researchers have started using concrete mix by having a combination of two or more fibres which are also known as hybrid fibres that are proportionally mixed. Concrete mixtures of hybrid fibres have the better energy absorption capability than the single fibre. Until now there has been no study carried out by researchers to investigate the potential of using hybrid steel fibre in the concrete mix for the application in blast protective structure and also explosive storage buildings. Therefore this research examines the properties of the hybrid steel fibre concrete focusing on the blast resistance capability of the concrete materials. The methodology is divided into two parts. In the first part the experimental work was conducted to investigate the performance of hybrid steel fibre concrete subjected to air blast loading.

A total of twenty one mixes, including one control mix without fibre, with different aspect ratios and steel fibre volume were prepared and tested to obtain the mechanical properties of hybrid steel fibre concrete. In addition to this, ten concrete panels with different aspect ratios were tested under one kilogram of plastic explosive to investigate the performance of the concrete materials under air blast loading. In the second part of the research, simulation work was carried out using AUTODYN simulation program to simulate the blast loading effect on hybrid concrete panel and validate the simulation using experimental data. The results of mechanical properties for hybrid steel fibre with the combination of 70 % long and 30 % short hooked end steel fibre at 1.5 % volume shows that the flexural strength of the concrete was increased up to 114 % and the split tensile strength test was increased up to 67 %. On the other hand the compressive strength of the hybrid concrete was increased up to 24 % as compared with all other mixes. The air blast test result shows that hybrid steel fibre with the combination of 70 % long and 30 % short steel fibre at volume fraction of 1.5 % have the optimum performance to blast loading as compared with the control mix. In the simulation works, hybrid concrete panel with the combination of 70 % long and 30 % short hooked end steel fibre at 1.5 % volume were simulated and the results were compared with experimental results. The simulation results using AUTODYN simulation program are found to be tally with experimental results. Based on the experimental and simulation results a blast resistance concrete material using hybrid fibres was developed. It is recommended that this material to be tested further under internal blast loading.

ABSTRAK

Di Malaysia, sebahagian besar bangunan dibina menggunakan konkrit tetulang. Salah satu kelemahan utama konkrit tetulang ini ialah ia mempunyai kekuatan tegangan yang rendah dan merupakan bahan binaan yang rapuh. Sehubungan dengan itu, konkrit mudah pecah dan membentuk serpihan bila ianya terdedah kepada impak letupan. Oleh yang demikian, adalah amat penting untuk mempertingkatkan kekuatan struktur bangunan agar dapat menahan kesan daripada impak letupan pada masa akan datang. Kajian sebelum ini mendapati kekuatan tegangan konkrit dapat ditambah dengan mencampurkan serat keluli di dalam konkrit. Selain itu, telah terbukti bahawa penggunaan serat keluli dapat meningkatkan potensi menahan impak letupan. Namun begitu, kajian mendapati bahawa manfaat penggunaan hanya sejenis serat keluli di dalam konkrit adalah terbatas. Kebanyakan penyelidik telahpun mengkaji penggunaan lebih daripada satu jenis serat di dalam campuran konkrit yang juga dikenali sebagai serat hybrid yang didapati lebih banyak memberi manfaat kepada sifat kekuatan konkrit berbanding dengan serat yang terdiri daripada satu jenis sahaja. Walau bagaimanapun, masih belum ada kajian yang dijalankan berkaitan dengan pengunaan serat keluli jenis hybrid di dalam campuran konkrit bagi tujuan menahan kesan impak letupan sehinggalah kajian ini dijalankan. Jelasnya, kajian ini tertumpu kepada mengkaji keupayaan pengunaan serat keluli hybrid di dalam campuran konkrit tetulang bagi tujuan untuk menahan kesan impak letupan. Kaedah kajian ini terbahagi kepada dua bahagian utama. Di bahagian pertama, kajian makmal dan juga ujian letupan dijalankan untuk mengenalpasti kesan campuran keluli hybrid disebabkan oleh impak letupan.

Dalam kajian makmal sebanyak dua puluh satu jenis campuran konkrit yang mengandungi campuran yang berbeza di sediakan dan kekuatan campuran tersebut telah diuji di makmal. Selain daripada itu, sepuluh buah panel konkrit dengan campuran hybrid serat yang berbeza disediakan dan diuji dengan mengunakan bahan letupan sebanyak satu kilogram. Manakala bahagian kedua pula melibatkan penggunaan perisian simulasi impak letupan iaitu "AUTODYN" untuk mengenalpasti kesan impak letupan di atas panel konkrit hybrid dan mengesahkan hasil simulasi dengan mengunakan keputusan ujian letupan. Hasil daripada keputusan ujian makmal mendapati bahawa campuran serat keluli hybrid yang terdiri daripada 70 % serat keluli panjang dan juga 30 % serat keluli pendek pada nisbah isipadu serat keluli sebanyak 1.5 % meningkatkan kekuatan lenturan konkrit sebanyak 114 % dan kekuatan tegangan konkrit sebanyak 67 %. Manakala kekuatan mampatan konkrit didapati bertambah sebanyak 24 % berbanding dengan sampel konkrit kawalan. Keputusan ujian letupan yang dijalankan mendapati bahawa campuran serat keluli hybrid yang terdiri daripada 70 % serat keluli panjang dan juga 30 % serat keluli pendek pada isipadu serat keluli sebanyak 1.5 % memberikan kesan yang paling optima daripada impak letupan di atas konkrit tetulang berbanding dengan campuran konkrit tetulang biasa. Hasil dari ujian simulasi menggunakan perisian simulasi "AUTODYN" mendapati bahawa terdapat persamaan yang ketara di antara keputusan ujian simulasi dengan keputusan ujian letupan. Oleh yang demikian, berpandukan kepada keputusan ujian letupan dan juga simulasi suatu konkrit yang mengunakan serat hybrid bagi tujuan menahan impak letupan telah dihasilkan. Walaubagaimanapun disyorkan bahawa bahan ini perlu ujian lanjut untuk mengenalpasti kesan terhadap impak letupan.

ACKNOWLEDGEMENT

My Grateful thanks to Allah SWT.....

I would like to thank and express my gratitude to my supervisor, Colonel. Prof. Ir. Dr. Norazman bin Mohamad Nor for his valuable guidance, advice and motivation, throughout the journey of finishing this thesis.

Special thanks to Lt. Colonel. Assoc. Professor Ariffin Ismail for his valuable help in conducting the field blast testing for this research. Acknowledgement is not complete without thanking En. Zawil, En. Bahaman, En. Zaidi, En. Helmi, En. Amran and En. Zakariya from the Engineering Faculty, Universiti Pertahanan Nasional Malaysia for providing assistance in conducting the experimental works. My sincere appreciation is also to Prof. Dr. Megat Hamdan for his support and encouragement throughout this period of the study.

Heartfelt acknowledgements are expressed to my beloved wife Noraziah Mohammad, and also my children, Yasmin Aqilah, Sarah Nabilah and Mohammad Firdaus. Without their sacrifices, patience, guidance, support, and encouragement, I may never have overcome this long journey in my studies.

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirement for the degree of **Doctor of Philosophy in Civil Engineering.** The members of the Supervisory Committee were as follows.

Col. Prof. Dr. Ir. Norazman bin Mohammad Nor

Dean of Post Graduate Studies Universiti Pertahanan Nasional Malaysia (Chairman)

Assoc. Prof. Dr. Risby Shohaimy

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Member)

Lt. Col. Assoc. Prof. Ariffin Ismail

Faculty of Defence Studies Universiti Pertahanan Nasional Malaysia (Member)

Prof. Dr. Fauzi Mohd Zain

Faculty of Engineering and Built Enviroment Universiti Kebangsaan Malaysia

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

:	Mohammed Alias Bin Yusof
:	22 July 1971
:	Performance of Hybrid Steel Fibre Reinforced Concrete
:	Subjected to Air Blast Loading
:	2012 / 2013
sis i	is classified as:
-	(Contains confidential information under the Official Secret Act 1972)*
	(Contains restricted information as specified by the organisation where research was done)*
5	I agree that my thesis to be published as online open access (full text)
	i i sis

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE

SIGNATURE OF SUPERVISOR

710722 10 6445 IC/PASSPORT NO. COL.PROF.IR.DR.NORAZMAN BIN MOHAMMAD NOR NAME OF SUPERVISOR

Date:

Date:

If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the Note: * organisation stating the period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGMENTS	vi
APPROVAL	vii
DECLARATION	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INTI	RODUCTION	1
	1.1 1.2 1.3	Introduction Problem Statement Objectives	1 2 6
	1.4	Scope of Research	6
	1.5	Research Significance	7
	1.6	Thesis layout	1
2	LITH	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Steel Fibre	11
	2.3	Steel Fibre Reinforced Concrete (SFRC)	12
		2.3.1 Bridging Action of Steel Fibre	14
		2.3.2 Stress Transfer Mechanism	15
		2.3.3 Mix design for SFRC	18
		2.3.4 Mixing of SFRC	19
		2.3.5 Fresh Properties of SFRC	20
		2.3.6 Hardened Properties of SFRC	22
		2.3.7 Compressive Strength	24
		2.3.8 Flexural Strength	25

	2.3.9 Tensile Strength	26
	2.3.10 Toughness Index	26
2.4	Behaviour of SFRC under Air Blast Loading	29
2.5	Hybrid Fibre Reinforced Concrete (HFRC)	35
	2.5.1 Mix Design of HFRC	37
	2.5.2 Mechanical Properties of HFRC	37
2.6	Explosion	48
2.7	Explosive Materials	49
2.8	Blast Phenomena	51
2.9	Blast Loading Categories	56
	2.9.1 External Blast Loading	56
	2.9.1.1 Free Air Burst	57
	2.9.1.2 Air Burst	57
	2.9.1.3 Surface Burst	58
2.10	Prediction of Blast Loading	59
2.11	Blast loading Effect on Building	60
2.12	Failure modes of Concrete	62
2.13	Damaged Classification	64
2.14	Field Blast Testing	65
2.15	Simulation Program	81
2.16	Conclusion	87
MET	THODOLOGY	88
3.1	Introduction	88
3.1 3.2	Introduction Experimental Works	88 90
3.1 3.2 3.3	Introduction Experimental Works Research Materials for experiment	88 90 92
3.1 3.2 3.3	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC)	88 90 92 92
3.1 3.2 3.3	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate	88 90 92 92 93
3.1 3.2 3.3	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate	88 90 92 92 93 93
3.1 3.2 3.3	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water	88 90 92 92 93 93 93
3.1 3.2 3.3	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre	88 90 92 92 93 93 93 96 96
3.1 3.2 3.3 3.4	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method	88 90 92 92 93 93 96 96 97
3.1 3.2 3.3 3.4 3.5	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen	88 90 92 92 93 93 96 96 97 97
3.1 3.2 3.3 3.4 3.5 3.6	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre	88 90 92 93 93 96 96 97 97 97
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method	88 90 92 93 93 96 96 97 97 97 99 101
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability	88 90 92 92 93 93 96 96 97 97 97 99 101
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test	88 90 92 92 93 93 96 96 97 97 99 101 101 102
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test	88 90 92 92 93 93 96 96 97 97 99 101 101 102 103
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index	88 90 92 92 93 93 96 96 96 97 97 99 101 101 102 103 105
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index 3.7.5 Split Tensile Test	88 90 92 92 93 93 96 96 97 97 99 101 101 102 103 105 107
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index 3.7.5 Split Tensile Test Fabrication of Reinforced Concrete Panel	88 90 92 92 93 93 96 96 97 97 97 99 101 101 102 103 105 107 108
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index 3.7.5 Split Tensile Test Fabrication of Reinforced Concrete Panel Design of Reinforced Concrete Panel	88 90 92 92 93 93 96 96 96 97 97 99 101 101 102 103 105 107 108 109
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index 3.7.5 Split Tensile Test Fabrication of Reinforced Concrete Panel Design of Reinforced Concrete Panel Material for Fabrication of Concrete Panel	88 90 92 92 93 93 96 96 97 97 97 99 101 101 102 103 105 107 108 109
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index 3.7.5 Split Tensile Test Fabrication of Reinforced Concrete Panel Design of Reinforced Concrete Panel Material for Fabrication of Concrete Panel	88 90 92 92 93 93 96 96 97 97 97 99 101 101 102 103 105 107 108 109 109
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Introduction Experimental Works Research Materials for experiment 3.3.1 Ordinary Portland Cement (OPC) 3.3.2 Coarse Aggregate 3.3.3 Fine Aggregate 3.3.4 Mixing Water 3.3.5 Steel Fibre Mix Design Method Preparation of Concrete Specimen Mixing of Concrete without Steel Fibre Concrete Testing Method 3.7.1 Workability 3.7.2 Compressive Strength Test 3.7.3 Flexural Strength Test 3.7.4 Toughness Index 3.7.5 Split Tensile Test Fabrication of Reinforced Concrete Panel Design of Reinforced Concrete Panel Material for Fabrication of Concrete Panel Steel Reinforcement for Concrete Panel Formwork	88 90 92 92 93 93 96 96 96 97 97 97 99 101 101 102 103 105 107 108 109 109

3.14	Placing of Fresh Concrete	113
3.15	Curing of Concrete Panel	114
3.16	Field Blast Testing Works	113
3.17	Explosive Materials	115
3.18	Blast Testing Jig	116
3.19	Instrumentation	117
••••	3 19 1 Accelerometer	118
	3 19 2 Pressure Sensor	119
	3 19 3 Plasticine Deflection Gauge	120
	3 19 4 Free Field Blast Test Pencil Probe	120
	3 19 5 High Speed Data Acquisition System	120
	3 19.6 High Speed Camera	121
	3 19 7 Crack Width Measurement Annaratus	122
3 20	Simulation Works	122
5.20	3 20.1. Geometry and Boundary Condition	125
	3.20.2 Material Model	123
	3 20 1 1 Concrete	127
	3 20 1 2 Steel reinforcement	127
	3.20.1.2 Steel reminificement	120
	2 20 1 4 Detension	121
2 21	5.20.1.4 Detollation	121
3.21	Conclusions	155
RESU	JLTS AND DISCUSSION	134
4.1	Introduction	134
4.1 4.2	Introduction Properties of Aggregate	134 135
4.1 4.2 4.3	Introduction Properties of Aggregate Trial mix results	134 135 138
4.1 4.2 4.3 4.4	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete	134 135 138 141
4.1 4.2 4.3 4.4	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test	134 135 138 141 141
4.1 4.2 4.3 4.4	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength	134 135 138 141 141 143
4.1 4.2 4.3 4.4	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test	134 135 138 141 141 143 145
4.1 4.2 4.3 4.4	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test	134 135 138 141 141 143 145 147
4.1 4.2 4.3 4.4	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test	134 135 138 141 141 143 145 147 148
4.1 4.2 4.3 4.4 4.5 4.5	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test	134 135 138 141 141 143 145 147 148 150
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test	134 135 138 141 141 143 145 147 148 150 151
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression	134 135 138 141 141 143 145 147 148 150 151 152
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Elexural Strength Test	134 135 138 141 141 143 145 147 148 150 151 152 153
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading	134 135 138 141 141 143 145 147 148 150 151 152 153 154
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158 159
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4 14	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test Failure Mode under Tensile Loading	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158 159 160
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test Failure Mode under Tensile Loading Distribution of Steel Fibre in the Concrete Mix	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158 159 160 161
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4. 1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test Failure Mode under Tensile Loading Distribution of Steel Fibre in the Concrete Mix Field Blast Test	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158 159 160 161 162
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \end{array}$ $\begin{array}{c} 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \\ 4.14 \\ 4.15 \\ 4.16 \end{array}$	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test Failure Mode under Tensile Loading Distribution of Steel Fibre in the Concrete Mix Field Blast Test 4.16.1 Instrumentation data	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158 159 160 161 162 163
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \end{array}$ $\begin{array}{c} 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \\ 4.14 \\ 4.15 \\ 4.16 \end{array}$	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test Failure Mode under Tensile Loading Distribution of Steel Fibre in the Concrete Mix Field Blast Test 4.16.1 Instrumentation data A 16.1 L Peak Overpressure	134 135 138 141 141 143 145 147 148 150 151 152 153 154 155 158 159 160 161 162 163 163
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \end{array}$ $\begin{array}{c} 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \\ 4.14 \\ 4.15 \\ 4.16 \end{array}$	Introduction Properties of Aggregate Trial mix results Test results for mechanical properties of concrete 4.4.1 Workability test 4.4.2 Compressive strength 4.4.3 Flexural Strength Test 4.4.4 Split Tensile Strength Test Summary of Mechanical Properties Test Selection of SFRC Samples for Air Blast Test Compressive Strength Test Failure Mode under Compression Flexural Strength Test Failure Mode under Flexural Loading Ultimate load and deflection Toughness Index Split Tensile Test Failure Mode under Tensile Loading Distribution of Steel Fibre in the Concrete Mix Field Blast Test 4.16.1 Instrumentation data 4.16.1.2 Free Field Peak Overpressure 4.16.1.2 Free Field Peak Overpressure	$134 \\ 135 \\ 138 \\ 141 \\ 141 \\ 143 \\ 145 \\ 147 \\ 148 \\ 150 \\ 151 \\ 152 \\ 153 \\ 154 \\ 155 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ 163 \\ 166 $

4

	4.16.1.3 Strain measurement	168
	4.16.1.4 Acceleration	170
	4.16.2 Failure Modes of Concrete	173
	4.16.2.1 Control Mix Concrete Panel	173
	4.16.2.2 SFRC with 100 % LF	175
	4.16.2.3 HSFRC with 70 % LF + 30 % SF	176
	4.16.2.4 HSFRC with 50 % LF + 50 % SF	178
	4.16.2.5 Summary of test results	180
4.17	Dispersion of Fibre in HSFRC panel	182
4.18	Numerical simulation	183
	4.18.1 Comparison results	184
	4.18.1.1 Peak Overpressure	184
	4.18.1.2 Crack Area on Concrete Panel	185
	4.18.1.3 Midpoint Deflection	187
	4.18.1.4 Strain Measurement	190
4.19	Summary	193
5 CON	CLUSION AND RECOMMENDATIONS	195
5.1	Introduction	186
5.2	Conclusion	187
5.3	Contribution to Knowledge	188
5.4	Recommendation and Future Works	189
DEFEDENCES		101
KEFERENCES		191
LISI OF APPENDICES		19/
A – Design Witx Calculation	l	19/
B – Reinforceu Concrete D BIODATA OF STUDENT		212 219
DIODATA OF STUDENT		41)

221

LIST OF PUBLICATIONS

LIST OF TABLES

TABLE NO.

DESCRIPTION

PAGE

2.1	Properties of Selected Fibre	10
2.2	Hardened Properties of Concrete	29
2.3	Type of Fibre used in the Hybrid Fibre Concrete	38
2.4	Fiber Content in Hybrid Fibre Concrete Mix	38
2.5	Results for Mechanical Properties of the mix	39
2.6	Mix Proportion of Hybrid Fibre Concrete	41
2.7	Test Results for Mechanical Properties of HFRC	41
2.8	Properties of Fibre used in the Experiment	42
2.9	Fibre Content for Each Mix of Volume Fraction	43
2.10	Results of the Experiment	44
2.11	Results for Mechanical Properties of HPFC	45
2.12	Toughness Index for HPFC	46
2.13	TNT Equivalence of High Explosive	49
2.14	Damaged Classification	65
2.15	Simulation Software used in the Blast Effect on Structur	e 82
3.1	Physical Properties of Cement	92
3.2	Grading Limit of Coarse Aggregate	93
3.3	Grading Limit of Fine Aggregate	95
3.4	Properties of Hooked end Steel Fibre	97
3.5	Test Samples for Concrete Mixes	98
3.6	Detail of Concrete Panel Fabricated for the Experiment	109
3.7	Materials Properties used in Simulation	129
3.8	Materials Properties for Explosive used in Simulation	132
4.1	Sieve Analysis for Coarse Aggregate Results	135
4.2	Sieve Analysis for Fine Aggregate Results	136
4.3	Average Compressive Strength for Trial Mix	138
4.4	Quantity of Steel Fibre Required for 0.1 m ³ of SFRC	140
4.5	Workability Test Results	141
4.6	Results for Compressive Strength	143
4.7	Results for Flexural Strength	145
4.8	Results for Split Tensile Strength	147
4.9	Summary of Mechanical Properties Results	149
4.10	Load and Deflection for concrete Beam	155

4.11	Test Results for Toughness Index	158
4.12	Test Results for Acceleration Value on Concrete Panel	172
4.13	Summary of Blast Test Result for Failure	
	Mode of Concrete	181

LIST OF FIGURES

FIGURE NO.

DESCRIPTION PAGE

1.1	Newspaper Report on Arson Attack in Klang Valley 3	
1.2	Damaged due to Attack on Building	3
1.3	View of Khobar Tower Destroy in Saudi Arabia	4
2.1	Type of Fibres	10
2.2	Different Types of Steel Fibres	11
2.3	Bridging Action of Steel Fibres in the Concrete	15
2.4	Stress Transfer Mechanism in Fibres and Cement Matrix	15
2.5	Interaction of Fibre Crack Matrix	16
2.6	Intersection of an Oriented Fibre Across a Crack	17
2.7	Aspect Ratio Dimension for Steel Fibre	20
2.8	Effect of Fibre Aspect Ratio on Vebe Time 21	
2.9	Fresh Mixed of SFRC	21
2.10	Workability Measurement Apparatus for SFRC	22
2.11	Effect of Steel Fibre on Mechanical Properties of SFRC	23
2.12	Effect of Steel Fibre on Compressive Strength	24
2.13	Load Deflection Curve Diagram of Toughness Index	27
2.14	Penetration Test Result from Experiment	30
2.15	Damaged Pattern for Normal Strength Concrete	32
2.16	Damaged Pattern on Steel Fibre Reinforced Concrete	32
2.17	Plan and Detail for Reinforcement of Beams	33
2.18	Experiment Test Set Up for Air Blast Test	34
2.19	Benefit of Hybrid Steel Fibres in Controlling Cracks	35
2.20	Stages in Development of Cracking in Hybrid Concrete	36
2.21	Photo Shows Sequence of Explosion Event	48
2.22	Plastic Explosive (PE4)	50
2.23	Formation of Shock Front in a Shock Wave	51
2.24	Sequence of Blast Event from the Centre of Explosion	53
2.25	Typical Blast Wave Profile	53
2.26	Blast Curve for Spherical of TNT in Free Air	55
2.27	External Blast Loading on Structure	56
2.28	Free Air Burst 57	
2.29	Air Burst	57
2.30	Surface Burst	58

2.31	Prediction of Blast Loading using ConWep Program	60
2.32	Blast Loading Effect on Building Structures	62
2.33	Failure Mode of Concrete Structures Subjected Blast	64
2.34	Field Blast Testing Components	66
2.35	Full Scale Blast Test Set Up	67
2.36	Displacement Measurement Devices	68
2.37	Pressure Time History for the Test	69
2.38	Acceleration at the Centre of Slab	70
2.39	Measured Strain at the Centre of Slab	71
2.40	Field Blast Test Set Up for test Panel	72
2.41	Deflection Measured at the Concrete Specimen	73
2.42	Field Blast Test Set Up for GFRC Panel	74
2.43	Blast Testing Rig	76
2.44	Field Blast Test Set Up	76
2.45	Pressure Time History for Air Blast Test	77
2.46	LVDT deflection gauge used in the Air Blast Test	77
2.47	Blast Test Support Frame Structure	79
2.48	Field blast test set up	79
2.49	Blast pressure gauge	79
2.50	Pressure Time History at the Centre of Concrete Panel	80
3.1	General Research Methodology Flow Chart	89
3.2	Flow Chart for Experimental Works 91	
3.3	Grading limit for Coarse Aggregate	94
3.4	Grading Limit for Fine Aggregate	95
3.5	Hooked end Steel Fibre	96
3.6	Mixing of Hybrid Steel Fibre Concrete	99
3.7	Mixing Sequence for Hybrid Steel Fibre Concrete	100
3.8	Steel Mould Used in the Experiment	101
3.9	Workability Measurement for HSFRC	102
3.10	Compressive Strength Test	103
3.11	Flexural Strength Test	104
3.12	Testing for Toughness Index	105
3.13	Load and Deflection Curve Diagram	106
3.14	Split Tensile Test	107
3.15	Plan and Section for Reinforced Concrete Panel	110
3.16	Preparation of Steel Reinforcement for Concrete Panel	111
3.17	Steel Formwork used for Casting of Concrete Panel	111
3.18	VISHAY Type Strain Gauges	112
3.19	Fixing of Strain Gauges	113
3.20	Compaction of Fresh Concrete using Vibrating Table	113
3.21	Curing of Reinforced Concrete Cubes and Panels	114
3.22	Reinforced Concrete Test Panel at the Test Site	115
3.23	Plastic Explosive used in Experiment	116
3.24	Blast Testing Jig	117
3.25	Schematic Layout for Instrumentation used in the test	118
3.26	Accelerometer	119
3.27	Pressure Sensor	119

3.28	Plasticine Deflection Gauge	120
3.29	Free Field Blast Pressure Probe	121
3.30	High Speed Data Acquisition System	121
3.31	High Speed Camera	122
3.32	Measurement of Crack Width on Concrete Sample	122
3.33	Flow chart for Simulation Works	124
3.34	2D model for Reinforced Concrete Panel	126
3.35	Numerical Mesh for Reinforced Concrete Panel	127
3.36	RHT Model used For Concrete	128
4.1	Sieve Analysis Test Results for Coarse Aggregate	135
4.2	Sieve Analysis Test Results for Fine Aggregate	137
4.3	Average Compressive Strength for Trial Mix	139
4.4	Workability Test Results	141
4.5	Photo of Workability Test Shows Very Stiff Mix	142
4.6	Results for Compressive Strength	144
4.7	Photo shows Steel Fibres Clamps	
	together in the Concrete Mix	144
4.8	Results for Flexural Strength Test	145
4.9	Results for Split Tensile Strength Test	147
4.10	Compressive Strength Test Result	151
4.11	Failure Modes of Concrete Cubes under Compression	152
4.12	Bridging Effect of Steel Fibre in Concrete Cube	153
4.13	Flexural Strength Test Result	153
4.14	Failure Modes of Concrete Beam	
	under Flexural Loading	155
4.15	Load and Deflection Curve for Concrete Beam	156
4.16	Bridging Action of Steel Fibres in Concrete Beam	157
4.17	Results for Toughness Index	158
4.18	Split Tensile Strength Test Results	159
4.19	Failure Mode of Concrete Cylinders for Tensile Loading	160
4.20	Bridging Action of Steel Fibre in Concrete Cylinder	161
4.21	Fiber Dispersion in SFRC Concrete Specimen	162
4.22	Schematic Diagram for Blast Test on Concrete Specimen	162
4.23	Peak Overpressure of 1 kg of PE4 at 0.3 meter	164
4.24	Spalling and Scabbing effect on Control Mix Panel	164
4.25	Effect of Blast Loading on Hybrid Concrete Panel	165
4.26	Free Peak Overpressure at the Distance of 3.0 meter	166
4.27	Free Peak Overpressure at the Distance of 6.0 meter	167
4.28	Free Peak Overpressure at the Distance of 9.0 meter	167
4.29	Maximum Free Field Blast Overpressure verses Distance	168
4.30	Measured Strain Time History for Control Mix Panel	169
4.31	Measured Strain Time History for 70 % (LF)+30 % (SF)	169
4.32	Results for Acceleration for on Control Mix Panel	171
4.33	Results for Acceleration on 100 % LF	171
4.34	Results for Acceleration on 70 % (LF)+30 % (SF)	172
4.35	Failure Modes of Control Mix Panel	174
4.36	Failure Modes of SFRC Panel with 100 % LF	175

4.37	Failure Modes of HSFRC with (70 % LF + 30 % SF)	
	Panel under Air Blast	177
4.38	Failure Modes of HSFRC with (50 % LF + 50 % SF)	
	Panel under Air Blast	179
4.39	Blast Test Set up	182
4.40	Photo Shows Steel Fibre Dispersion in the Test Panel	182
4.41	Comparison between Simulation and Experiment Results	184
4.42	Simulation Result for Deformation on Control Mix Panel	185
4.43	Experimental Results for Deformation on Control Mix	185
4.44	Simulation Results for Deformation of HSFRC Panel	186
4.45	Experimental Result for Deformation on HSFRC Panel	186
4.46	Simulation Results for Control Mix Concrete Panel	187
4.47	Experimental Results for Control Mix Concrete Panel	188
4.48	Simulation Results for Hybrid Concrete Panel	189
4.49	Experimental Results for Hybrid Concrete Panel	189
4.50	Simulation Result for Control Mix Panel	190
4.51	Experimental Results for Control Mix Panel	191
4.52	Simulation Result for Hybrid Steel Fibre Concrete	192
4.53	Experimental Results for Hybrid Steel Fibre Concrete	192

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
ALE	Arbitrary Lagrangian Eulerian
ASTM	American Standard for Testing and Materials
BS	British Standard
DOE	Department of Enviroment
FRC	Fibre Reinforced Concrete
GFRP	Glass Fibre Polymer Reinforced Composite
HSC	High Strength Concrete
HSFRC	Hybrid Steel Fibre Reinforced Concrete
HPRC	Hybrid Polypropylene Reinforced Concrete
LF	Long Fibre
LVDT	Linear Variable Displacement Transducer
NFPA	National Fire Protection Association
NI	National Instrument
NSC	Normal Strength Concrete
PE4	Plastic Explosive 4
PP	Polypropylene
PVA	Polyvinyl Alcohol
RHT	Riedel – Hiermair- Thoma
S	Steel Fibre
SF	Short Fibre
SFRC	Steel Fibre Reinforced Concrete
STRIDE	Science and Technology Research Institute for Defence
TM5	Technical Manual No.5
TNT	Trinitrotoluene

UPHC Ultra Performance Steel Fibre Reinforced Concrete

CHAPTER 1

INTRODUCTION

1.1 Introduction

Since the attack on the World Trade Centre in New York on September 11, 2001 and the Pentagon in Washington, United States of America, the construction industry around the world has been challenged to design and build civil and military structures which are capable to withstand explosions due to terrorist attacks. Attacks directed towards vulnerable structures have caused considerable damage and loss of life. The immediate effects of such attacks are blast overpressures propagating through the atmosphere, fragments generated and scattered by the blast wave and ground shock loads resulting from the energy imparted to the ground.

Concrete is a widely used construction material for building infrastructures and also military facilities. Concrete has a low tensile strength and brittle which leads to spalling and scabbing when it is subjected blast attack by terrorist (Chuan, 2004). As a result there is a requirement to increase the blast resistance capability of the concrete used for building structures especially for government, military and corporate buildings, strategic bridges, dams and also chemical or petroleum plants that are all at risk from terrorist attacks. Studies show that by introducing steel fibres into the concrete increase the tensile, shear and flexural properties of the concrete (Bayazi, 1989). Benefits of using steel fibres were also reported by (Nagarkar, et *al.*,1989) which include impact resistance, flexural and tensile strengths, ductility, and fracture toughness. Therefore the use of steel fibres within the concrete can be an economical method to improve blast resistance of concrete, with distinct advantages over other fibres such as carbon and PVA fibre, as these materials are cheap and available locally.

By utilizing fibre reinforced concrete, it is expected that the capacity of the concrete elements to resist the blast can be increased, while the effect of fragmentation can be reduced by the bridging action of the steel fibre. The reduction in secondary fragmentation is a critical property of the material since this fragmentation can lead to substantial damage to both personnel and equipment, and it is difficult to prevent with current normal strength concrete materials.

1.2 Problem Statement

In Malaysia, the attack on three churches in the Klang Valley using explosive were reported in the local newspaper (Mazwin, 2010). In the first incident, the three storey Metro Church in Desa Melawati was attacked using homemade petrol bomb, this was followed by another two similar attacks on the Church in Jalan Templer and also Section 17, Petaling Jaya, Selangor. This arson attack is shown in Figure 1.1 and Figure 1.2.

Figure 1.1: Newspaper report on arson attack at three churches in Klang Valley (Mazwin, 2010)

Figure 1.2: Damaged due to the attack on the building (Mazwin, 2010).