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ABSTRACT 

The purpose of this research is to develop a general predictive mathematical model 

of the deformation behaviours for various symmetric geometrical tubes under lateral 

compression between two flat rigid plates. The mathematical model has been 

proposed based on rigid, perfectly plastic model and the energy balance method.  The 

mathematical models are divided into two cases i.e. 'Case 1' and 'Case 2' based on the 

geometrical shapes of the tubes. ‘Case 1’ is for shapes with number of sides 6, 10, 14 

and so on such as hexagonal, decagonal and tetra-decagonal tubes. Whereas, ‘Case 2’ 

is for shapes with number of sides 4, 8, 12 and so on such as square, octagonal and 

dodecagonal tubes. The prediction or assumption used in this mathematical model 

was that the tubes would deform in phase by phase during plastic deformation. In 

order to achieve this purpose, the deformation behaviour and the energy-absorption 

performance of various geometrical tube shapes need to be determined. The 

geometrical tubes shapes which were studied include square, hexagonal, octagonal, 

decagonal, dodecagonal and tetra-decagonal tubes. For that, experimental tests and 

finite element analysis (FEA) simulation were conducted to determine the collapse 

behaviour of these various symmetrical geometric tubes. First, the quasi-static lateral 

compression test was conducted on square and cylindrical tubes experimentally and 

by FEA simulation method by using INSTRON Universal Testing Machine and 

ABAQUS software respectively. Both results were compared to validate the FEA 

simulation results. Then, the validated FEA simulation method was performed for 

these various symmetrical geometric tubes to determine their deformation behaviour 
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and energy-absorption performance and then to validate the newly mathematical 

model. The comparison between the experiment and FEA simulation had shown 

good agreement. The simulation study showed that square and symmetric hexagonal 

tubes deformed with 1 phase of plastic deformation, symmetric octagonal and 

decagonal tubes deformed with 2 phases of plastic deformation, symmetric 

dodecagonal and tetra-decagonal tubes deformed with 3 phases of plastic 

deformation. It was determined that, the general mathematical model had succeeded 

to predict the deformation behaviour of various symmetric geometrical shapes for 

both cases but discrepancy occurred for certain specimens due to sudden high peak at 

the last phase and small angle difference for neighbouring sides. The energy – 

absorption performance analyses for different types of symmetric geometrical tubes 

had shown that symmetric hexagonal tube produced the best energy-absorption with 

high total energy absorption, low yield stress and long stroke without any sudden 

jump force. 
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ABSTRAK 

Tujuan kajian ini adalah untuk membangunkan model matematik ramalan umum 

bagi tingkah laku ubahan-bentuk untuk berbagai tiub bergeometrik simetri di bawah 

mampatan sisian antara dua plat tegar rata. Model matematik dicadangkan 

berdasarkan model tegar, plastik sempurna dan kaedah tenaga saksama.  Model 

matematik ini terbahagi kepada dua kes iaitu 'Kes 1' dan 'Kes 2' berdasarkan kepada 

bentuk geometrik tiub. Kes ' 1' adalah untuk bentuk tiub dengan bilangan sisi 6, 10, 

14 dan seterusnya seperti tiub heksagon, dekagon dan tetra-dekagon. Manakala, 'Kes 

2' bagi bentuk tiub dengan bilangan sisi 4, 8, 12 dan seterusnya seperti tiub segi 

empat sama, oktagon dan dodekagon. Ramalan atau andaian yang digunakan dalam 

model matematik ini adalah bahawa tiub akan mengalami ubah-bentuk fasa demi 

fasa semasa ubahan-bentuk plastik. Untuk mencapai tujuan ini, tingkah-laku ubah-

bentuk dan prestasi serapan-tenaga tiub-tiub berbagai bentuk geometrik perlu 

ditentukan. Bentuk-bentuk geometrik tiub yang dikaji termasuk tiub segi empat 

sama, heksagon, oktagon, dekagon, dodekagon dan tetra-dekagon. Untuk itu, 

simulasi analisis unsur terhingga (FEA) dan ujian eksperimen telah dijalankan untuk 

menentukan tingkah-laku keruntuhan tiub-tiub bergeometrik simetri tersebut. 

Pertama, ujian mampatan sisian separa statik dijalankan ke atas tiub segi empat sama 

dan tiub silinder secara eksperimen menggunakan mesin ujikaji universal INSTRON 

dan secara simulasi FEA menggunakan perisian ABAQUS. Kedua-dua keputusan 

dibandingkan untuk mengesahkan keputusan simulasi FEA. Kemudian, kaedah 

simulasi FEA yang telah disahkan dilakukan ke atas kesemua tiub-tiub bergeometrik 
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simetri tersebut untuk menentukan tingkah laku ubahan-bentuk dan prestasi serapan-

tenaga bentuk-bentuk tersebut dan kemudian untuk mengesahkan model baru 

matematik. Perbanding antara eksperimen dan simulasi FEA telah menunjukkan 

perjanjian yang baik. Kajian simulasi menunjukkan bahawa tiub segiempat sama dan 

tiub heksagon simetri mengalami ubah-bentuk dengan 1 fasa pada ubahan-bentuk 

plastik, tiub oktagon simetri dan tiub dekagon simetri mengalami ubah-bentuk 

dengan 2 fasa pada ubahan-bentuk plastik, tiub dodekagon simetri dan tiub tetra-

dekagon simetri mengalami ubah-bentuk dengan 3 fasa pada ubahan-bentuk plastik. 

Telah dipastikan bahawa model matematik umum telah berjaya untuk meramalkan 

tingkah-laku ubahan-bentuk pelbagai bentuk tiub bergeometrik simetri bagi kedua-

dua kes. Walau bagaimanapun, berlaku percanggahan pada spesimen tertentu 

disebabkan kemunculan puncak tinggi secara mendadak di fasa terakhir dan 

perbezaan sudut yang kecil pada sisi-sisi yang berjiran. Analisis prestasi serapan-

tenaga pada tiub-tiub bergeometrik simetri yang berbeza telah menunjukkan bahawa 

tiub heksagon simetri menghasilkan serapan-tenaga terbaik dengan jumlah serapan-

tenaga yang tinggi, kadar hasil yang rendah dan strok yang panjang tanpa mana-

mana peningkatan mendadak pada kuasa. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the Research 

In the modern era of lives, transportation is one of the main needs to travel 

from one location to another location and to deliver goods. Due to the advanced 

technology of the modern world, the vehicles could be produced in a massive 

volume. In Malaysia, the number of vehicles registered in the year of 2011 was 

21,311,630 increased by more than 1 million from the year of 2010 (Royal Malaysia 

Police, 2012). Moreover, vehicles can also have very high speeds. There are also a 

lot of heavy vehicles like lorries and trucks on the road. The increasing number of 

vehicles with high speeds and massive weight will lead to a more severe damage to 

the people and environment if traffic accident occurs.  

The number of people killed and injured due to the road accident is reported 

to be increasing year by year. World Health Organization (WHO) reported around 

1.3 million people are killed in road traffic collisions worldwide every year (WHO, 

2009). Furthermore, the number of injuries or disabilities is estimated between 20 



 

2 

 

and 50 million people worldwide every year. The European Union (EU) with the 

number of motor vehicles is nearly half of the about 500 million population reported  

the numbers of injuries and deaths from road accidents are 1200, and 34,500 

respectively each year (European Commission, 2011). The United States of America 

(USA) with 309 million population and 256 million registered motorised vehicles in 

2008, reported 33,808 deaths due to road accidents (National Highway Traffic Safety 

Administration, 2010). In Malaysia, nearly 7000 deaths and over 25,000 injuries 

have been reported in 2011due to road accidents (Royal Malaysia Police, 2012). 

Hence, road traffic fatalities, disabilities, and injuries have become a major global 

public health issue. Due to these associated increases, society has become more 

aware and concerned for the safety aspects of transportation. 

This has led researchers in the last few decades to study and develop impact 

protection systems to prevent and reduce the effects of collisions. These safety 

systems can be divided into two types i.e. active and passive safety systems (Johnson 

and Mamalis, 1978). The function of active safety systems is to prevent collision to 

happen. Some of the examples of active safety system are the application of 

electronic control systems to improve drivers’ visibility, improved vehicle handling 

devices and anti-lock-braking systems (ABS). On the other hand, the function of 

passive safety systems is to reduce the collision effects to the vehicles and occupants 

by limiting the level of deceleration and dissipating the kinetic energy during impact 

in the controlled manner. Some of the examples of passive safety systems are the 


