A MATHEMATICAL MODEL DEVELOPMENT FOR THE QUASI-STATIC LATERAL COLLAPSE OF THE GENERALISED GEOMETRIC HOLLOW SHAPES

MUHAMAD GHAZALI BIN KAMARDAN

Thesis Submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2014

DEDICATION

"Especially for

My beloved mother and father,

Maimun binti Abdullah Munir

and Kamardan bin Sati

My beloved Wife

Noor Hidayah binti Mat Sari

My beloved Childeren

Nurdina Syaherah,

Muhammad Danish Syazwan

and Ahmad Daniyal Syafie

Thank you very much for all your prayers for me.

May Allah bless you all with a lot of goodness.

ABSTRACT

The purpose of this research is to develop a general predictive **mathematical** model of the deformation behaviours for various symmetric geometrical tubes under lateral compression between two flat rigid plates. The mathematical model has been proposed based on rigid, perfectly plastic model and the energy balance method. The mathematical models are divided into two cases i.e. 'Case 1' and 'Case 2' based on the geometrical shapes of the tubes. 'Case 1' is for shapes with number of sides 6, 10, 14 and so on such as hexagonal, decagonal and tetra-decagonal tubes. Whereas, 'Case 2' is for shapes with number of sides 4, 8, 12 and so on such as square, octagonal and dodecagonal tubes. The prediction or assumption used in this mathematical model was that the tubes would deform in phase by phase during plastic deformation. In order to achieve this purpose, the deformation behaviour and the energy-absorption performance of various geometrical tube shapes need to be determined. The geometrical tubes shapes which were studied include square, hexagonal, octagonal, decagonal, dodecagonal and tetra-decagonal tubes. For that, experimental tests and finite element analysis (FEA) simulation were conducted to determine the collapse behaviour of these various symmetrical geometric tubes. First, the quasi-static lateral compression test was conducted on square and cylindrical tubes experimentally and by FEA simulation method by using INSTRON Universal Testing Machine and ABAQUS software respectively. Both results were compared to validate the FEA simulation results. Then, the validated FEA simulation method was performed for these various symmetrical geometric tubes to determine their deformation behaviour

and energy-absorption performance and then to validate the newly mathematical model. The comparison between the experiment and FEA simulation had shown good agreement. The simulation study showed that square and symmetric hexagonal tubes deformed with 1 phase of plastic deformation, symmetric octagonal and decagonal tubes deformed with 2 phases of plastic deformation, symmetric dodecagonal and tetra-decagonal tubes deformed with 3 phases of plastic deformation. It was determined that, the general mathematical model had succeeded to predict the deformation behaviour of various symmetric geometrical shapes for both cases but discrepancy occurred for certain specimens due to sudden high peak at the last phase and small angle difference for neighbouring sides. The energy – absorption performance analyses for different types of symmetric geometrical tubes had shown that symmetric hexagonal tube produced the best energy-absorption with high total energy absorption, low yield stress and long stroke without any sudden jump force.

ABSTRAK

Tujuan kajian ini adalah untuk membangunkan model matematik ramalan umum bagi tingkah laku ubahan-bentuk untuk berbagai tiub bergeometrik simetri di bawah mampatan sisian antara dua plat tegar rata. Model matematik dicadangkan berdasarkan model tegar, plastik sempurna dan kaedah tenaga saksama. Model matematik ini terbahagi kepada dua kes iaitu 'Kes 1' dan 'Kes 2' berdasarkan kepada bentuk geometrik tiub. Kes ' 1' adalah untuk bentuk tiub dengan bilangan sisi 6, 10, 14 dan seterusnya seperti tiub heksagon, dekagon dan tetra-dekagon. Manakala, 'Kes 2' bagi bentuk tiub dengan bilangan sisi 4, 8, 12 dan seterusnya seperti tiub segi empat sama, oktagon dan dodekagon. Ramalan atau andaian yang digunakan dalam model matematik ini adalah bahawa tiub akan mengalami ubah-bentuk fasa demi fasa semasa ubahan-bentuk plastik. Untuk mencapai tujuan ini, tingkah-laku ubahbentuk dan prestasi serapan-tenaga tiub-tiub berbagai bentuk geometrik perlu ditentukan. Bentuk-bentuk geometrik tiub yang dikaji termasuk tiub segi empat sama, heksagon, oktagon, dekagon, dodekagon dan tetra-dekagon. Untuk itu, simulasi analisis unsur terhingga (FEA) dan ujian eksperimen telah dijalankan untuk menentukan tingkah-laku keruntuhan tiub-tiub bergeometrik simetri tersebut. Pertama, ujian mampatan sisian separa statik dijalankan ke atas tiub segi empat sama dan tiub silinder secara eksperimen menggunakan mesin ujikaji universal INSTRON dan secara simulasi FEA menggunakan perisian ABAQUS. Kedua-dua keputusan dibandingkan untuk mengesahkan keputusan simulasi FEA. Kemudian, kaedah simulasi FEA yang telah disahkan dilakukan ke atas kesemua tiub-tiub bergeometrik simetri tersebut untuk menentukan tingkah laku ubahan-bentuk dan prestasi serapantenaga bentuk-bentuk tersebut dan kemudian untuk mengesahkan model baru matematik. Perbanding antara eksperimen dan simulasi FEA telah menunjukkan perjanjian yang baik. Kajian simulasi menunjukkan bahawa tiub segiempat sama dan tiub heksagon simetri mengalami ubah-bentuk dengan 1 fasa pada ubahan-bentuk plastik, tiub oktagon simetri dan tiub dekagon simetri mengalami ubah-bentuk dengan 2 fasa pada ubahan-bentuk plastik, tiub dodekagon simetri dan tiub tetradekagon simetri mengalami ubah-bentuk dengan 3 fasa pada ubahan-bentuk plastik. Telah dipastikan bahawa model matematik umum telah berjaya untuk meramalkan tingkah-laku ubahan-bentuk pelbagai bentuk tiub bergeometrik simetri bagi keduadua kes. Walau bagaimanapun, berlaku percanggahan pada spesimen tertentu disebabkan kemunculan puncak tinggi secara mendadak di fasa terakhir dan perbezaan sudut yang kecil pada sisi-sisi yang berjiran. Analisis prestasi serapantenaga pada tiub-tiub bergeometrik simetri yang berbeza telah menunjukkan bahawa tiub heksagon simetri menghasilkan serapan-tenaga terbaik dengan jumlah serapantenaga yang tinggi, kadar hasil yang rendah dan strok yang panjang tanpa manamana peningkatan mendadak pada kuasa.

ACKNOWLEDGEMENTS

All the praises belong to Allah, The Lord of the universe who has given the author the strength and ability to pursue and complete his PhD. The author would like to acknowledge the Ministry of Higher Education of Malaysia and Universiti Tun Hussein Onn Malaysia for sponsoring his PhD endeavour.

The author wishes to express his sincere gratitude to all his supervisors Prof. Dr. Ahmad Mujahid bin Ahmad Zaidi, Prof. Dato' Dr. Mohd. Noh bin Dalimin and Dr. Mohd Zaid bin Othman for their enthusiastic guidance, time, support, encouragement and comments in developing and completing this thesis. The author also would like to express his gratitude to SIRIM berhad, Malaysia which provided the facilities for the FEA simulation analysis via ABAQUS software.

The author is indebted to these individuals who have directly or indirectly assisted him throughout his studies:

Late Mr. Ezkandar Sanny bin Jailani who had given him courage and support; Dr. Waluyo and Mr. Ahmad bin Abbas for helping the author with the 'ABAQUS'FEA simulation; Mr. Yaakob, Mr. Faizal, Mr. Adam and Mr. Shafik for their help in the experimental work; Mr. Mahmud, Mr. Zulhafni, and Mr. Kana for their helpful discussion and suggestion in impact related areas; Assoc. Prof. Rozaini, Mr. Nazib, Mr. Daniel, Mr. Joseph, Mr. Zulkarnain and Mr. Kamarul Affendi for their support in general areas of the studies, and Mr. Zainal for proofreading the completed thesis. Last but not least, the author would also like to express his appreciation to Assoc. Prof. Dr. Azmi bin Khamis and Prof. Dr. Hashim bin Saim whom made this post graduate study possible.

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ahmad Mujahid Bin Ahmad Zaidi, PhD Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Mohd Noh Bin Dalimin, PhD

Professor/ Dato' Office of the Vice-Chancellor / Chancellery Office Universiti Tun Hussein Onn Malaysia (Member)

Mohd Zaid Bin Othman, PhD

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Member)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	:	Muhamad Ghazali bin Kamardan
Date of birth	:	14 March 1973
Title	:	A mathematical model development for the quasi-static lateral collapse of the generalised geometric hollow shapes
Academic Session		: 2013/2014

I declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Pertahanan Nasional Malaysia reserves the right as follows:

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE

SIGNATURE OF SUPERVISOR

	PROF. DR. AHMAD MUJAHID
730314-10-5353	BIN AHMAD ZAIDI
(I/C NO.)	NAME OF SUPERVISOR

Date:

Date:

Note : * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

			Page
ABSTRA	СТ		ii
ABSTRA	K		iv
ACKNO	WLEDGE	MENTS	vi
APPROV	/AL		vii
DECLAI	RATION		viii
	TABLES		xii
LIST OF	FIGURES	5	xiii
LIST OF	ABBREV	IATIONS	xxi
СНАРТИ	ER		
1	INTROI	DUCTION	1
	1.1 Back	ground of the Research	1
	1.2 The	Crashworthiness Properties and the Energy-absorption	
	Syste		3
		lem Statements	4
		earch Objectives	5 5
	-	be of Research	
	1.6 Layo	out of the Thesis	6
2		ATURE REVIEW	9
	2.1 Intro		9
		l Compression	14
		Circular Tube	17
		Square Tube	19
		Hexagonal Tube	23
		Frusta Tubes	24
		Other Shape Tubes	25
		Multi-cell Tubes	25
		Inversion of Tubes	26
		Splitting Tubes	28
		ral Compression	30
	2.3.1	Cylindrical Tube	33
		Square Tube	34
		Hexagonal Tube	35
		Oblong Tube	36
			38
		Nested Cylindrical System	40
	2.3.7		43
	2.3.8	Other Cylindrical Systems	46
		lamentals of the Mathematical Model	48
	2.4.1	The Bending Moment and the Curvature of Central Axis	53

	2.4.2	Statically Admissible Stress Field and Lower Bound Theorem	55
	2.4.3	Kinematically Admissible Velocity/Displacement Field and	55
	2.4.3	Upper Bound Theorem	56
	2.4.4	Lateral Collapse of Symmetric Geometrical Tubes	50 57
	2	Eachar Compse of Symmetric Scometrear Tubes	57
3		DOLOGY	60
	3.1 Intro		60
		Experimental Procedures	65
		Specimen Specifications	65
		Material Properties	66
		The Experimental Test Samples	68
		The Tensile Test Results	74
	3.2.5	Quasi-Static Compressive Test	74
4	FINITE	ELEMENT ANALYSIS	77
	4.1 Intro	duction	77
	4.2 The	Geometrical Shapes	78
		Square and Symmetric Hexagonal Tubes	79
		Symmetric Octagonal Tube	81
	4.2.3	Symmetric Decagonal (Polygon with Ten Sides) Tubes	83
	4.2.4		84
	4.3 The 1	Development of the Finite Element Analysis Model	87
		The Parts Module	88
	4.3.2	The Material Property Module	89
	4.3.3	The Assemble Module	90
	4.3.4	The Step Module	91
		The interaction Module	92
		The Load Module (Load and Boundary Condition)	93
	4.3.7	The Mesh Module	94
5	MATHE	MATICAL MODEL	95
	5.1 Intro		95
	5.2 'Case		96
	5.2.1	Hexagon	97
	5.2.2	0	102
	5.2.3		110
	5.2.4		115
	5.3 'Case		121
	5.3.1		121
	5.3.2	1	123
	5.3.3	e	126
	5.3.4		128
			132

6	RESUL	IS AND DISCUSSION	134
	6.1 Intro	oduction	134
	6.2 Vali	dation of Simulation Results with Experimental Data	137
	6.3 Sym	metric Hexagonal and Square Tubes	140
	6.3.1	Load- Deformation Behaviour of Square and Various	
		Symmetric Hexagonal Tubes Compared with Cylindrical	
		Tube	141
	6.3.2	Energy-Absoprtion Performance	143
	6.3.3	Validation of Mathematical Model Results with Simulatio	n
		Results	145
	6.4 Sym	metric Octagonal Tubes	148
	6.4.1	Load-Deformation Behaviour	148
	6.4.2	Energy-Absoprtion Performance	151
	6.4.3	Deformation Mode	152
	6.4.4	Validation of Mathematical Model Results with Simulation	on
		Results	153
	6.5 Sym	metric Decagonal (Polygon with Ten Sides) Tubes	156
	6.5.1	Load- Deformation Behaviour	156
	6.5.2	Energy-Absoprtion Performance	159
	6.5.3	Deformation Mode	161
	6.5.4	Validation of Mathematical Model Results with Simulation	on
		Results	162
	6.6 Sym	metric Dodecagonal (Polygon with Twelve Sides) Tubes	166
	6.6.1	Load-Deformation Behaviour	166
	6.6.2	Energy-Absoprtion Performance	169
	6.6.3	Deformation Mode	170
	6.6.4	Validation of Mathematical Model Results with Simulation	on
		Results	171
	6.7 Sym	metric Tetra-decagonal (Polygon with Fourteen Sides)	
	Tube		174
	6.7.1	Load-Deformation Behaviour	175
	6.7.2	Energy-Absoprtion Performance	177
	6.7.3	Deformation Mode	179
	6.7.4	Validation of Mathematical Model Results with Simulation	on
		Results	181
7	CONCL	USIONS AND SUGGESTIONS FOR FUTURE WORK	K 183
	7.1 Con	clusions	183
	7.2 Sugg	gestions for Future Work	186
REFERE	ENCES		190
		E STUDENT	196
	CULUM VI		197
	PUBLICA		201

LIST OF TABLES

TABLE NO	. TITLE	PAGE
Table 3.1	The dimensions of the rectangular tension test specimens (ASTM,2004).	70
Table 3.2	The Dimensions of the Large-Diameter Tubular Tension Test Specimens (ASTM, 2004).	73
Table 3.3	The mechanical properties of the aluminium and mild steel tubes obtained from tensile test.	74
Table 4.1	The material mechanical properties of stainless steel.	90
Table 5.1	The polygon used in the mathematical study.	96
Table 5.2	Load-deformation behaviour prediction for various symmetric geometrical tube shapes.	132
Table 6.1	Energy absorption produced by cylindrical, square and various symmetric hexagonal tubes.	143
Table 6.2	Energy absorption produced by various symmetric octagonal tubes.	151
Table 6.3	Energy absorption produced by various symmetric decagonal tubes.	159
Table 6.4	Energy absorption produced by various symmetric dodecagonal tubes.	169
Table 6.5	Energy absorption produced by various symmetric tetra- decagonal tubes.	177

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Two type of structure before (dotted line) and during compressive loading (a) Type I structure and (b) Type II structure (Calladine and English, 1984).	12
Figure 2.2	Graph of Load-Displacement of Type I and Type II (Calladine and English, 1984).	12
Figure 2.3	Collapse behaviour of tube under lateral compression (a) Strain-hardening behaviour, (b) Strain-softening behaviour and (c) Perfectly-plastic behaviour (Li et al., 2006).	13
Figure 2.4	The assumption of axi-symmetric deformation mechanism (Alexander, 1960).	15
Figure 2.5	An improved axi-symmetric deformation model (Abramowicz and Jones, 1984a, 1986).	16
Figure 2.6	Deformation mechanism for axi-symmetric model with improved arc profile (Grzebieta, 1990).	16
Figure 2.7	Axi-symmetric deformation model of a cylindrical tube (Wierzbicki et al., 1992).	16
Figure 2.8	Various collapse modes for thin-walled circular aluminium tubes under axial loading (a) axisymmetric mode (concertina); (b) non-symmetric mode (diamond) and (c) mixed mode (Guillow et al., 2001)	17
Figure 2.9	The kagome sandwich column's geometrical construction (Zhang et al., 2010).	18
Figure 2.10	Deformation modes of square tube from left to right : One extensional lobe; Two extensional lobes and One extensional lobe and one asymmetric lobe where $S =$ symmetric, $E =$ extensional, $A =$ asymmetric, $T =$ transition (Fyllingen et al., 2012).	20

Figure 2.11	Finite element models of three types of tube: (a) conventional tube without groove; (b) tube with four grooves i.e. one grove on every sidewall; and (c) tube with grooves i.e. one grove on two opposite sidewalls (Zhang and Huh, 2009).	21
Figure 2.12	Origami pattern introduced on square tube (a) side view and (b) top view (Song et al., 2012).	22
Figure 2.13	Final post-buckling deformation state of a hexagonal sectioned model using LS-DYNA (Rossi et al., 2005).	23
Figure 2.14	The diagram of the geometrical structure for the straight and tapered rectangular tubes (Nagel and Thambiratnam, 2005).	24
Figure 2.15	The specimens geometrical cross-sections left to right: hexagon, octagon, 12-sided star and 16-sided star (Fan et al., 2013).	25
Figure 2.16	Section geometry and dimensions of various multi-cell (Nia and Parsapour, 2014).	26
Figure 2.17	Deformed shape diagram of a cylindrical tube under internal inversion loading under experimental test and ABAQUS simulation (Reid and Harrigan, 1998).	27
Figure 2.18	The sketch of the experimental set-up by Huang et al. (2002).	28
Figure 2.19	Typical square metal tube specimen after the performed experimental tests (Huang et al., 2002).	29
Figure 2.20	Schematic diagram of the experimental set-up of blast loading (Kim et al., 2013).	30
Figure 2.21	Theoretical and experimental diagrams of lateral load/length-displacement of the empty steel specimen HSE-05 (Niknejad and Rahmani, 2014).	36
Figure 2.22	Schematic of an oblong sample tube under quasi-static load (Baroutaji et al., (2014).	37
Figure 2.23	Deformation behaviour pattern of brass rings fixed at one end after the impact loading of 34 m/s (Reid and Reddy, 1983).	38

Figure 2.24	The deformation systems of hexagonal rings (Mahdi and Hamouda, 2012).	40
Figure 2.25	The compression of three-tube system at the initial and final stages (Morris et al., 2006).	41
Figure 2.26	A schematic design of both the standard and optimised design of nested oblong tubes systems (Olabi et al., 2008)	42
Figure 2.27	Symmetric and asymmetric deformations of braced metal tubes (Wu and Carney, 1997).	45
Figure 2.28	Two deformation stages for a 20° braced elliptical tube (Wu and Carney, 1998)	46
Figure 2.29	Three types of stess-strain curves (a) the stress remains at yield stress, Y as the deformation continuous, (b) the stress increased linearly as the deformation continues, (c) stress increased by a power law as the deformation continues (Lu and Yu, 2003).	49
Figure 2.30	Three types of idealised stess-strain curves under tension: (a) elastic, perfectly plastic; (b) elastic, linear hardening; and (c) elastic, power hardening (Lu and Yu, 2003).	50
Figure 2.31	Three types of rigid, plastic model stess-strain curves (a) rigid, perfectly plastic, (b) rigid, linear hardening; and (c) rigid, power hardening (Lu and Yu, 2003).	52
Figure 2.32	Bending profile of an elastic, perfectly plastic beam: (a) stress across the thickness; (b) the diagram of non-dimensional moment vs. curvature (Yu and Zhang, 1996).	54
Figure 2.33	Bending profile of a rigid, perfectly plastic beam: (a) stress across the thickness; (b) the diagram of moment vs. curvature (Yu and Zhang, 1996).	55
Figure 3.1	Various tube's geometrical shapes used in this study (a) hexagon, (b) decagon (10 sides), (c) tetra-decagon (14 sides), (d) square, (e) octagon and (f) dodecagon (12 sides)	61
Figure 3.2	Flow-chart of the research methodology	64
Figure 3.3	Samples of the metallic symmetric tube specimens: (a) Aluminium square tube, (b) Mild steel cylindrical tube	66

Tensile test using servo hydraulic dynamic testing machine	67
Tensile test using servo hydraulic dynamic testing machine	68
CNC vertical milling machine	69
The drawing of the rectangular tension test specimens (ASTM, 2004).	70
The uniaxial tensile test samples of the square cross section aluminium tube (a) before the tensile test; (b) during the tensile test.	71
Cutting off location of a longitudinal tensile test specimens from large-diameter tube (ASTM, 2004).	72
The sketch of the large-diameter tubular tensile test specimens (ASTM, 2004).	72
The uniaxial tensile test samples of the circular cross section mild steel tube (a) before tensile test; (b) the sample break during tensile test.	73
Compression test using the Universal Test Machine	75
The shape of the circular tube with 4 stationary hinges.	76
The shape of the square tube 6 stationary hinges.	76
A square tube: (a) The drawing of hollow square shape; (b) The 3D dimensional diagram of square tube in ABAQUS software.	79
Symmetric hexagonal shape	80
Hexagonal shapes at various angles, θ (a) 15°, (b) 30°, (c) 45° and (d) 60°.	81
Symmetric octagonal shape	81
Symmetric octagonal shapes at various angles, θ_1 (a) 30°, (b) 45° and (c) 60°.	82
Symmetric decagonal shape	83
	Tensile test using servo hydraulic dynamic testing machine CNC vertical milling machine The drawing of the rectangular tension test specimens (ASTM, 2004). The uniaxial tensile test samples of the square cross section aluminium tube (a) before the tensile test; (b) during the tensile test. Cutting off location of a longitudinal tensile test specimens from large-diameter tube (ASTM, 2004). The sketch of the large-diameter tubular tensile test specimens (ASTM, 2004). The uniaxial tensile test samples of the circular cross section mild steel tube (a) before tensile test; (b) the sample break during tensile test. Compression test using the Universal Test Machine The shape of the circular tube with 4 stationary hinges. The shape of the square tube 6 stationary hinges. A square tube: (a) The drawing of hollow square shape; (b) The 3D dimensional diagram of square tube in ABAQUS software. Symmetric hexagonal shape Hexagonal shapes at various angles, $\theta(a)$ 15°, (b) 30°, (c) 45° and (d) 60°.

Figure 4.7	Symmetric decagonal shapes of $\theta_1 = 45^\circ$ and various angles, θ_2 (a) 15° and (b) 30°.	84
Figure 4.8	Symmetric decagonal shapes of $\theta_1 = 60^\circ$ and various angles, θ_2 (a) 15°, (b) 30° and (c) 45°.	84
Figure 4.9	Symmetric dodecagonal shape	85
Figure 4.10	Symmetric tetra-decagonal shape	85
Figure 4.11	Symmetric dodecagonal shapes of $\theta_1 = 60^\circ$ and various angles, θ_2 (a) 15°, (b) 30° and (c) 45°.	86
Figure 4.12	Hollow symmetric tetra-decagon shapes of $\theta_1 = 60^\circ$, $\theta_2 = 45^\circ$ and Various Angles, θ_3 (a) 15° and (b) 30°.	87
Figure 4.13	The diagram of symmetric hexagonal tube placed in between two rigid plates.	90
Figure 5.1	Symmetric hexagonal shape	97
Figure 5.2	Symmetric hollow hexagon shape compressed between two rigid plates	98
Figure 5.3	The collapse of first quadrant of a symmetric hollow hexagon shape during compression	99
Figure 5.4	The final collapse of first quadrant of a symmetric hollow hexagon shape under lateral compression	101
Figure 5.5	Symmetric decagon shape	103
Figure 5.6	Symmetric hollow decagon shapes compressed between the two rigid plates	104
Figure 5.7	The collapse of first quadrant of a symmetric hollow decagonal shape during 'Phase 1' deformation under lateral compression	105
Figure 5.8	Complete deformation of 'Phase 1' of decagonal tube under lateral compression	106
Figure 5.9	'Phase 2' collapse of symmetric hollow decagon shapes	108

Figure 5.10	Symmetric tetra-decagonal shape	111
Figure 5.11	Shape transformations of symmetric tetra-decagonal tubes	112
Figure 5.12	Generalised symmetric polygonal shape of 'Case 1'	116
Figure 5.13	Square shape	122
Figure 5.14	Symmetric octagonal shape	123
Figure 5.15	Shape transformation of symmetric octagonal tubes	124
Figure 5.16	Symmetric dodecagon shapes	126
Figure 5.17	Shape transformations of symmetric dodecagonal tubes	127
Figure 5.18	Generalised symmetric polygonal shape of 'Case 2'	129
Figure 6.1	The shape's dimension of various symmetric geometrical tubes	137
Figure 6.2	Force vs deflection diagrams - simulation results compared against the experimental data obtained from the lateral loading of tubes (a) Aluminium square tube (b) Mild steel cylindrical tube.	139
Figure 6.3	Square and various hexagon shapes.	140
Figure 6.4	Force vs deformation/ total height relationship for cylindrical, square and various symmetric hexagonal tubes.	141
Figure 6.5	Comparing mathematical against simulation results of force vs deformation/total height relationship of square and symmetrical hexagonal of various angles, θ tubes: (a) square ($\theta = 0^{\circ}$), (b)15°, (c) 30°, (d) 45° and (e) 60°.	146
Figuro 6 6	Symmetric octagonal shape	140
Figure 6.6		140
Figure 6.7	Force vs deformation/ total height relationship of cylindrical and symmetric octagonal of various angles, θ_1	
	and $\theta_2 = 0^\circ$ tubes.	149
Figure 6.8	Comparing deformation mode results of mathematical against simulation results at 'Phase 1' and 'Phase 2' of symmetric octagonal tubes.	152

Figure 6.9	Comparing mathematical against simulation results of force vs deformation/total height relationship of symmetric octagonal tubes of various angle θ_1 and $\theta_2 = 0^{\circ}$ (a) 30°, (b) 45° and (c) 60°.	154
Figure 6.10	Symmetric decagonal shapes	156
Figure 6.11	Force vs deformation/ total height relationship of cylindrical and symmetric decagonal of various angles θ_1 and θ_2 tubes.	157
Figure 6.12	Comparing deformation mode results of mathematical against simulation result at 'Phase 1' and 'Phase 2' of symmetric decagonal tubes	162
Figure 6.13	Comparing mathematical against simulation results of force vs deformation/total height relationship of symmetric decagonal tubes of Various θ_1 and θ_2 . (a) $\theta_1 = 45^\circ$, $\theta_2 = 15^\circ$, (b) $\theta_1 = 45^\circ$, $\theta_2 = 30^\circ$, (c) $\theta_1 = 60^\circ$, $\theta_2 = 15^\circ$, (d) $\theta_1 = 60^\circ$, $\theta_2 = 30^\circ$ and (e) $\theta_1 = 60^\circ$, $\theta_2 = 45^\circ$.	164
Figure 6.14	Symmetric dodecagon shapes	166
Figure 6.15	Force vs deformation/ total height relationship of cylindrical and symmetric dodecagonal tubes of $\theta_1 = 60^\circ$, various angles θ_2 and $\theta_3 = 0^\circ$ tubes.	167
Figure 6.16	Comparing deformation mode result of mathematical against simulation result at 'Phase 1', 'Phase 2' and 'Phase 3' of symmetric dodecagonal tubes.	170
Figure 6.17	Comparing mathematical against simulation results of force vs deformation/total height relationship of symmetric dodecagonal tubes of $\theta_1 = 60^\circ$, various angles θ_2 and	
	$\theta_3 = 0^\circ$: (a) 15°, (b) 30° and (c) 45°.	172
Figure 6.18	Symmetric tetra-decagonal shapes	174
Figure 6.19	Force vs deformation/ total height relationship of cylindrical, Dodecagonal- 60-45, Tetra-decagonal-60-45-15 and Tetra-decagonal-60-45-30 tubes.	175

Figure 6.20 Comparing deformation mode result of mathematical against simulation result at 'Phase 1', 'Phase 2' and 'Phase 3' of symmetric tetra-decagonal tubes 179

Figure 6.21	Comparing mathematical against simulation results of force					
	vs deformation/total he	eight relationship o	f sym	metric tet	ra-	
	decagonal tubes of	$\theta_1 = 60^\circ, \ \theta_2 = 45^\circ$	and	Various	θ_3	
	(a) 15° and (b) 30° .					182

LIST OF ABBREVIATIONS

$ heta_i$	-	The angle between the oblique side and the vertical axis at phase- i
δ	-	The displacement.
к	-	The bending curvature
ĸ _e	-	The maximum elastic curvature
ν	-	Poisson's Ratio
σ	-	Stress (N/m ²)
$\sigma_{ m Y}$	-	Yield stress (N/m ²)
$\sigma_{ m UTS}$	-	Ultimate stress (N/m ²)
E	-	No. of element
Z	-	Integers
3	-	Normal strain (mm)
ε _y	-	Yield strain (mm)
ε _f	-	Fracture strain (mm)
Ε	-	Young's modulus (N/m ²)
E_p	-	Hardening modulus (N/m ²)
E _{in}	-	Input energy / external energy (kJ)
W^e	-	Elastic strain energy (kJ)
D	-	Plastic strain energy (kJ)
F	-	Force (N)
F^{o}	-	Lower bound of the actual limit loads (N)
F^*	-	Upper bound of the actual limit loads (N)
F_s	-	Actual limit loads (N)
H_i	-	Vertical height of the oblique side at phase- <i>i</i> , (mm)
Κ	-	Material constants
L	-	Length (m)
М	-	Bending moment (N)
M_e	-	Maximum elastic bending moment (N)
M_p	-	The fully plastic bending moment (N)

- N Normal forces (N)
- Y The yield stress of the material (N/m^2)
- U1 Displacement component in the 1-direction (mm)
- U2 Displacement component in the 2-direction (mm)
- U3 Displacement component in the 3-direction (mm)
- UR1 Rotational displacement component about the 1-direction
- UR2 Rotational displacement component about the 2-direction
- UR3 Rotational displacement component about the 3-direction
- *b* The width of the tube (mm)
- h The thickness of the tube (mm)
- *m* Number of phases
- *n* Number of sides
- *q* Hardening exponent

CHAPTER 1

INTRODUCTION

1.1 Background of the Research

In the modern era of lives, transportation is one of the main needs to travel from one location to another location and to deliver goods. Due to the advanced technology of the modern world, the vehicles could be produced in a massive volume. In Malaysia, the number of vehicles registered in the year of 2011 was 21,311,630 increased by more than 1 million from the year of 2010 (Royal Malaysia Police, 2012). Moreover, vehicles can also have very high speeds. There are also a lot of heavy vehicles like lorries and trucks on the road. The increasing number of vehicles with high speeds and massive weight will lead to a more severe damage to the people and environment if traffic accident occurs.

The number of people killed and injured due to the road accident is reported to be increasing year by year. World Health Organization (WHO) reported around 1.3 million people are killed in road traffic collisions worldwide every year (WHO, 2009). Furthermore, the number of injuries or disabilities is estimated between 20 and 50 million people worldwide every year. The European Union (EU) with the number of motor vehicles is nearly half of the about 500 million population reported the numbers of injuries and deaths from road accidents are 1200, and 34,500 respectively each year (European Commission, 2011). The United States of America (USA) with 309 million population and 256 million registered motorised vehicles in 2008, reported 33,808 deaths due to road accidents (National Highway Traffic Safety Administration, 2010). In Malaysia, nearly 7000 deaths and over 25,000 injuries have been reported in 2011due to road accidents (Royal Malaysia Police, 2012). Hence, road traffic fatalities, disabilities, and injuries have become a major global public health issue. Due to these associated increases, society has become more aware and concerned for the safety aspects of transportation.

This has led researchers in the last few decades to study and develop impact protection systems to prevent and reduce the effects of collisions. These safety systems can be divided into two types i.e. active and passive safety systems (Johnson and Mamalis, 1978). The function of active safety systems is to prevent collision to happen. Some of the examples of active safety system are the application of electronic control systems to improve drivers' visibility, improved vehicle handling devices and anti-lock-braking systems (ABS). On the other hand, the function of passive safety systems is to reduce the collision effects to the vehicles and occupants by limiting the level of deceleration and dissipating the kinetic energy during impact in the controlled manner. Some of the examples of passive safety systems are the