EXPERIMENTAL INVESTIGATION OF ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CONCRETE BLOCK INCORPORATED WITH CARBON FIBER AND CARBON NANOTUBE

MAHADI BIN SHARIF

MASTER OF SCIENCE

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

EXPERIMENTAL INVESTIGATION OF ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CONCRETE BLOCK INCORPORATED WITH CARBON FIBER AND CARBON NANOTUBE

MAHADI BIN SHARIF

Thesis Submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science (Electrical and Electronics Engineering)

July 2017

ABSTRACT

High conducting metal such as Mu-metal, aluminum and silver are commonly used as shielding material which prevents electromagnetic radiation by reflection. However, metal material exhibit various disadvantages such as heavy weight, high cost, poor corrosion resistance and poor processing. Over these few decades, non-metal materials such as carbon black (CB), carbon fiber (CF) and carbon nanotube (CNT) are gaining popularity as they are corrosion resistant, have high tensile strength, are light weight, have low cost and design flexibility. The use of EMI shielding in commercial and military application has rapidly increased and are widely used. Therefore, the objective of this study is to investigate the EMI shielding effectiveness (SE) of nonmetal materials used in concrete block via experimental methods. There are two materials used in the study, namely carbon fiber and multiwalled carbon nanotube (MWCNT). The EMI SE of carbon fiber was studied with respect to their orientation at the same layer of material while MWCNT was examined by different weightage percentage. The EMI SE measurement was conducted using Vector Network Analyzer (VNA) in the frequency range of 2.4 GHz to 4.2 GHz. The results show that CF sample with perpendicularly orientation of CF (0⁰/90⁰/0⁰/90⁰/ 0⁰) has higher EMI SE than other CF samples with EMI SE of -40.26 dB at 4.02 GHz with improvement of 15.71 % compared to reference

ii

sample. Meanwhile, it is found that CNT sample with 2.0 wt% of MWCNT has higher EMI SE compared to the sample with 1.5 wt% and 1.8 wt% of MWCNT. This sample obtained the highest EMI SE of -40.78 dB at 3.45 GHz with improvement of 17.23% compared to reference sample. The compressive strength test of concrete block was also conducted using compressive strength machine. It was observed that, all concrete blocks passed the strength test according to the grade 30 concrete mixture standard that is adjudged to be safe for application in building construction.

ABSTRAK

Pengalir tinggi logam seperti logam-Mu, aluminium dan perak biasa sebagai digunakan bahan yang menghalang sinaran elektromagnet melalui mekanisma pemantulan. Walau bagaimanapun, bahan-bahan logam ini mempunyai pelbagai kelemahan seperti kos yang tinggi, berat, ketahanan hakisan yang lemah dan sukar untuk diproses. Sejak beberapa dekad, bahan bukan logam seperti carbon black (CB), carbon fiber (CF) dan carbon nanotube (CNT) semakin popular kerana ia tahan hakisan, mempunyai kekuatan tegangan yang tinggi, ringan, kos rendah dan mudah dibentuk. Penggunaan perisai EMI dalam aplikasi komersial dan tentera telah semakin meningkat dan digunakan secara meluas. Oleh itu, objektif kajian ini adalah menganalisis keberkesanan perisai EMI bahan-bahan bukan logam yang digunakan dalam blok konkrit. Terdapat dua bahan-bahan yang digunakan dalam kajian ini iaitu carbon fiber dan multi-walled carbon nanotube (MWCNT). Keberkesanan perisai EMI carbon fiber diuji mengikut orientasi yang berbeza dengan menggunakan lapisan yang sama bahan manakala MWCNT diuji mengikut kepekatan yang berbeza. Keberkesanan perisai EMI ini diuji menggunakan Vector Network Analyzer (VNA) dalam julat frekuensi 2.4 GHz hingga 4.2 GHz. Hasil kajian menunjukkan bahawa sampel CF yang berorientasikan tegak lurus daripada CF (0° / 90° / 0° / 90° / 0°) mempunyai keberkesanan

iv

perisai EMI lebih tinggi berbanding sampel CF yang lain dengan nilai -40.26 dB pada frekuensi 4.02 GHz dengan peningkatan sebanyak 15.71% berbanding dengan sampel rujukan. Sementara itu, didapati bahawa sampel CNT dengan kepekatan MWCNT sebanyak 2.0% mempunyai keberkesanan perisai EMI yang lebih tinggi berbanding sampel yang memiliki kepekatan 1.5% dan 1.8% daripada MWCNT. Sampel ini memperoleh keberkesanan perisai EMI yang tertinggi dengan -40.78 dB pada frekuensi 3.45 GHz dengan peningkatan 17.23% berbanding dengan sampel rujukan. Ujian kekuatan mampatan konkrit juga dijalankan menggunakan mesin kekuatan mampatan. Diperhatikan bahawa kesemua blok konkrit lulus ujian kekuatan mengikut piawaian konkrit iaitu gred 30 di mana selamat untuk digunakan dalam pembinaan bangunan.

ACKNOWLEDGEMENTS

First of all, I would like to take this opportunity to express my heartiest and special appreciation to my research supervisor, Madam Chew Sue Ping for her relentless guidance in this research work. Her enthusiasm, intelligence and patience have helped me grow and develop myself in my studies and research. Without her guidance and persistent help, this dissertation would not have been successfully completed. I am forever indebted to her.

I would also like to express my sincere gratitude to Mr. Ahmad Faridz bin Abd Ghafar and Mr. Mohd Idris bin Ishak from Science and Technology Research Institute for Defence (STRIDE) for helped me lot during the experimental work. Their invaluable knowledge have helped me a lot in improving my research work.

In addition, I would like to thank my beloved family, and my friends who have been instrumentally involved in my research. Thank you for all the moral support and kindness, and providing me brilliant ideas on how to improve my dissertation.

Last but not least, I am particularly grateful to the Ministry of Education Malaysia and Universiti Pertahanan Nasional Malaysia (UPNM) for giving me the financial support under RAGS/2012/UPNM/TK02/08 grant to embark in this research.

vi

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and accepted as partial fulfillment of the requirement for the degree of Master of Science (Electrical and Electronics Engineering). The members of the Supervisory Committee were as follows:

Chew Sue Ping,

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

APPROVAL

I certify that an Examination Committee has met on 18th May 2017 to conduct the final examination of Mahadi bin Sharif on his degree thesis entitled 'Experimental Investigation of Electromagnetic Interference Shielding Effectiveness of Concrete Block Incorporated with Carbon Fiber and Carbon Nanotube'. The committee recommends that the student be awarded the Master of Science (Electrical and Electronics Engineering).

Members of the Examination Committee were as follows:

Mohd Taufik bin Jusoh @ Tajudin, PhD

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Siti Nooraya binti Mohd Tawil, PhD

Associate Professor Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Thelaha Hj Masri, PhD

Associate Professor Faculty of Engineering Universiti Malaysia Sarawak (External Examiner)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name Date of birth		MAHADI BIN SHARIF 31 st JULY 1990
Title	:	EXPERIMENTAL INVESTIGATION OF
		ELECTROMAGNETIC INTERFERENCE
		SHIELDING EFFECTIVENESS OF
		CONCRETE BLOCK INCORPORATED
		WITH CARBON FIBER AND CARBON
		NANOTUBE
Academic Session	:	2013/2014

I declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
X OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows:

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

SIGNATURE 900731-12-6779 IC/PASSPORT NO. SIGNATURE OF SUPERVISOR CHEW SUE PING NAME OF SUPERVISOR Date:

Date:

Note: * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the organization stating the period and reasons for confidentiality and restriction.

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS AND SYMBOLS	xvi

CHAPTER

1

	INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope of the Study	4
1.5	Contribution of the Study	5
1.6	Outline of the Study	5
	LITERATURE REVIEW	
2.1	Introduction	7
2.2	Electromagnetic Interference	8
2.3	Electromagnetic Interference Shielding	9
2.3.1	Shielding Effectiveness (SE)	10
2.3.1.1	Scattering Parameter (S- Parameter)	11
2.3.1.2	Mathematical Relationship of SE	14
2.3.2	International Standard Testing Procedure	15
2.4	Shielding Material	17

2.4.1	Carbon Fiber as Shielding Material	17
2.4.2	Related Works on Carbon Fiber Materials	18
2.4.3	Carbon Nanotube as Shielding Material	20
2.4.4	Related Works on Carbon Nanotube Materials	20
2.5	Summary	24

3

METHODOLOGY

3.1	Introduction	25
3.2	Selection of Materials	27
3.2.1	Carbon Fiber	28
3.2.2	Carbon Nanotube	29
3.3	Preparation of Concrete Casting	32
3.4	Electromagnetic Interference Test	38
3.4.1	EMC Semi-Anechoic Chamber	38
3.4.2	Testing Procedure	39
3.4.3	Shielding Effectiveness	42
3.5	Summary	43

4

RESULT AND DISCUSSIONS

4.1	Introduction	44
4.2	EMI Shielding Effectiveness	45
4.2.1	Analysis of Carbon Fiber Samples	45
4.2.2	Analysis of Carbon Nanotube Samples	50
4.3	Comparison of CF and CNT Samples	55
4.3.1	Comparison of Reflection Losses	56
4.3.2	Comparison of Absorption Losses	57
4.3.3	Comparison of EMI Shielding Effectiveness	58
4.4	Compressive Strength Test	59

4.5 Summa	ary	
-----------	-----	--

5	CONCLUSION AND
	RECOMMENDATIONS

5.1	Conclusion	64
5.2	Recommendations	67

REFERENCES	68
APPENDIX A	73

61

 APPENDIX B
 74

 APPENDIX C
 78

APPENDIX D 82

	95	
BIODATA OF THE STUDENT	98	

LIST OF TABLES

DESCRIPTION	PAGE		
Mathematical shielding relationships	14		
Data Specification of Materials			
Properties of MWCNT			
Physical properties of cement			
Concrete Grade and Usage	34		
Ratio of concrete Mixture for Shielding Material	35		
Wall Panel			
Summarized result for CF and CNT samples	62		
	Mathematical shielding relationships Data Specification of Materials Properties of MWCNT Physical properties of cement Concrete Grade and Usage Ratio of concrete Mixture for Shielding Material Wall Panel		

LIST OF FIGURES

FIGURE NO	D. DESCRIPTION	PAGE
2.1	Scattering Parameters Concepts	12
2.2	MIL-STD-285 Measurement Set-up	15
2.3	ASTM D4935-99 Measurement Set-up	16
2.4	Schematic of three samples with different orientation	18
2.5	Configuration of EMI SE Measurement Set-Up	21
2.6	Schematic diagrams of EMI shielding tester and EMI	23
	shielding mechanism	
3.1	Flow chart for the experimental works	26
3.2	Carbon fiber composites layer organization	28
3.3	Weight Balance	30
3.4	MR-Hei Tech Magnetic Stirrer	31
3.5	Sonicator (QSONICA Q700)	32
3.6	Concrete casting preparation	36
3.7	Compressive test machine	37
3.8	EMC Semi Anechoic Chamber	39
3.9	Block Diagram of Anritsu VNA MS2026B	40
3.10	Block Diagram for Experimental Set-up	40
3.11	EMI penetration test set-up	41
4.1	Reflection shielding effectiveness of CF samples	46
4.2	Absorption shielding effectiveness of CF samples	46
4.3	Proportion of absorption and reflection	48
4.4	EMI SE of carbon fiber samples	49
4.5	Reflection (SE _R) shielding effectiveness of CNT	51
	samples	
4.6	Absorption (SE _A) shielding effectiveness of CNT	52
	samples	
4.7	Proportion of reflection and absorption	53

4.8	EMI SE for CNT samples	54
4.9	Comparison of reflection losses between S0, S2 and	56
	cnt2.0	
4.10	Comparison of absorption losses between S0, S2	57
	and cnt2.0	
4.11	Comparison of EMI SE between S2 and cnt2.0	58
4.12	Compressive strength test of CF samples	60
4.13	Compressive strength test of CNT samples	60

LIST OF ABBREVIATIONS AND SYMBOLS

EMI	-	Electromagnetic Interferences
EM	-	Electromagnetic
CF	-	Carbon Fiber
CNT	-	Carbon Nanotube
EMC	-	Electromagnetic Compatibility
STRIDE	-	Science And Technology Research Institute of
		Defence
СВ	-	Carbon Black
SE	-	Shielding Effectiveness
MWCNT	-	Multi-Walled Carbon Nanotube
VNA	-	Vector Network Analyzer
WLAN	-	Wireless Local Area Network
LTE	-	Long Term Evolution
S-Parameter	-	Scattering-Parameter
SUT	-	Sample Under Test
dB	-	Decibel
CISPR	-	Comité International Spécial des Perturbations
		Radioélectriques
RF	-	Radio Frequency
Pi	-	Incident Power
Pt	-	Outgoing Power
NR	-	Natural Rubber
EVA	-	Ethylene Vinyl Acetate
SFC	-	Short Carbon Fiber
SF	-	Silica Fume
HDPE	-	High-Density Polyethylene
GA	-	Gum Arabic
DW	-	Distilled Water
OPC	-	Ordinary Portland Cement

BS	-	British Standard
UPNM	-	Universiti Pertahanan Nasional Malaysia
SAC	-	Semi Anechoic Chamber
UHF	-	Ultra High Frequency
PVP	-	Polyvinylpyrrolidone
HCTAB	-	Hexadodecyltrimethylammoniumbromide
R	-	Reflectance
Т	-	Transmittance
А	-	Absorbance
Р	-	Pressure
F	-	Force
А	-	Area
Hz	-	Hertz
cm	-	Centimeter
wt%	-	Weightage Percentage
N/mm ²	-	Newton Per Meter Square
Ν	-	Newton
m ²	-	Meter Square
MPa	-	Megapascals
CS	-	Compressive Strength

CHAPTER 1

INTRODUCTION

1.1 Background

The electromagnetic interference (EMI) is an electromagnetic (EM) signal that unintentionally disturbs and influences the operation of electronics devices. The devices are affected by these unwanted signals either via radiation, conduction or emission which can interfere and degrade electronics system performance of certain devices or equipment such as computer, radio, mobile communication, medical and military systems [1, 2]. The rapid development of electronic systems and telecommunication technologies causes the EM pollution continues increasing to a level never attained before [3].

The influence of EM signals have drawn huge attention since few decades ago as there were a lot of occurring accidents related to EMI such as aircraft crash, uncommand missile signal launch, and

interruption of medical equipment [4]. One serious case of EMI occurred on the USS Forestall and reported number of 134 people were killed and caused a damage of \$ 72M [5].

The implementation of some techniques such as Spread Spectrum analysis, EMI filters and shielding have been developed which are able to reduce the EM radiation [6]. The spread spectrum analysis is a technique used to modulate the EMI signal and spread the energy over a wider frequency range by applying square wave signals while the EMI filter is a technique where the combination of capacitors and inductors as the filter to eliminate the unwanted frequency signal from entering the system. However, the EMI filter is not only for eliminating the noise, but also for preventing the creation of noise by the system.

EM radiation shielding technique is one of the most common technique which provide effective and excellent shielding properties in order to reduce and limit the EM wave radiation. The technique is implemented using appropriate shielding material in order to prevent the EMI penetration.

In this project, the shielding efficiency of carbon fiber (CF) and carbon nanotube (CNT) in term of shielding in cement composites with respect to their orientations and weight percentages were investigated. The materials are placed inside the concrete block and measured in the frequency range from 2.4 GHz to 4.2 GHz. The EMI penetration test is

conducted in the electromagnetic compatibility (EMC) semi-anechoic chamber at Science and Technology Research Institute of Defence (STRIDE).

1.2 **Problem Statement**

The EMI problem is commonly reduced by shielding the electromagnetic signal. The most effective EMI shielding materials have high conductivity, high permittivity and high aspect ratio [7]. Therefore, the attenuation of EMI has been recently investigated by many researchers [8 – 12].

Metal-based materials can be classified as the most effective shielding materials for reducing EMI. Different kinds of metals such as Mu-metal, aluminum and copper are widely used in commercial and industrial applications. High conducting materials such as metals were used as shielding material; preventing electromagnetic radiation makes it a very good candidate for EMI shielding. However, metal exhibit various disadvantages such as heaviness, cost, corrosion, poor processing, molding properties and processability [13].

Compared to metal based EMI shielding materials, carbon based composites such as carbon black (CB), CF and CNT have gained particular interest due to their light weight, versatility, corrosion resistance, flexibility and processing advantages [14 – 16]. In addition, both CF and CNT possess high conductivity, high permittivity, small

diameter and high aspect ratio [17, 18] which exhibit higher EMI shielding effectiveness (SE). CNTs have been considered as a promising candidate which having excellent electrical conductivity and unique length-to-diameter ratio [19].

1.3 Objective of the Study

Two materials are used in the project, namely carbon fiber and multi-walled carbon nanotube (MWCNT). The objective of this study as follow:

- 1. To investigate the EMI shielding effectiveness (SE) of non-metal materials used in the concrete block experimentally.
- To analyze the EMI SE performance as well as the comparison for both CF and CNT samples.

1.4 Scope of the Study

- Conducting literature review on the EMI, EMI shielding material as well as shielding effectiveness.
- ii. Preparation of EMI shielding materials.
- iii. Investigation of EMI SE of concrete block incorporated with carbon fiber and carbon nanotube experimentally.
- iv. Analyzing and interpreting results of EMI SE performance as well as the comparison for both CF and CNT samples.

1.5 Contribution of the Study

The drastic increase in EMI-related problems nowadays causes the existing EMI shielding techniques seem to be less effective. Therefore, there is a need to develop an EMI shielding to reduce EMI pollutions as well as improve the reliability and capability of system. In this study, EMI SE of CF and MWCNT were investigated in the frequency range of 2.4 GHz to 4.2 GHz as factors affecting the EMI SE such as concentration and orientation of material were taken into consideration. As a result, the development of EMI shielding in concrete block incorporated with CF and MWCNT will able to reduce EMI signal penetration in many application such as Wireless Local Area Network (WLAN), Bluetooth, microwave oven and medical devices (2.4 GHz to 2.5 GHz); amateur radio and commercial Long Term Evolution (LTE) devices (3.4 GHz to 3.6 GHz); and moderate range surveillance and weather radar (2 GHz to 4 GHz).

1.6. Outline of the Study

This study comprises of five chapters. Chapter 1 begins with the background, problem statement, objectives of the study, scope of the study, contribution of the study and outline of the study. Chapter 2 presents an overview of the literature review related to EMI shielding material researches and its connection to this study. Next, Chapter 3 elaborates on the research methodology used in conducting the

experiments. Chapter 4 discusses the results obtained from EMI SE of CF and MWCNT based EMI shielding. Finally, Chapter 5 concludes the overall findings and recommendations for the future studies.