BEHAVIOUR OF LAMINATED GLASS PANELS SUBJECTED TO IMPACT

AND AIR BLAST LOADING

LEE WEI SZER

Thesis submitted to Centre for Graduate Studies, **Universiti Pertahanan Nasional Malaysia**, in fulfillment of the requirements for the Degree of Master of Science (Civil Engineering)

2020

Specially dedicated to: My beloved father, Lee Yoon Fut, My beloved mother, Hoo Len Yin, My lovely brother, Lee Wei Shiong, My supervisors, Assoc. Prof. Ir. Dr. Mohammed Alias Bin Yusof and Brig Jen Prof. Ir. Dr. Norazman bin Mohamad Nor

ABSTRACT

Attacks directed towards vulnerable structures have caused considerable damages to personnel, equipment and also loss of life. Due to this, laminated glass has been adopted as a safety glass for building as it offer higher protection to human and surroundings even after the glass is cracked. The objectives of this research is to investigate performance for impact and blast resistance of LG PVB, LG EVA, LG PU Resin and LG SGP. The methodology in this research is divided into three major parts. The first part is to determine the mechanical properties of the laminated glass with different interlayers. Second, experimental work for impact test was carried out using EN 356 and third is field blast testing carried out according to ASTM F 1642-04 to obtain the blast related data and also to investigate the behaviour of the laminated glass subjected to air blast loading. The impact test result shows that only LG SGP survived in the impact test using 5.5 kg of steel indenter at a distance of 1.15m and be able to absorbed a total of 65 Joule of impact energy. On the other hand, the blast test result shows that LG SGP, LG PU Resin and LG PVB able to withstand the peak overpressure of 337.84 kPa and reflected pressure of 4688.43 kPa with the SGP interlayer perform the best among all the other interlayers. While LG EVA failed during the test. It is recommended that the SGP to be used as blast resistant glass for building subjected to terrorist attacks. This research is expected to contribute new knowledge on safety to human as glass is widely used in all areas.

ABSTRAK

Serangan ke struktur terdedah telah menyebabkan kematian dan kerosakan kepada peralatan. Oleh itu, kaca berlapis telah digunakan sebagai kaca keselamatan untuk bangunan kerana menawarkan perlindungan yang lebih tinggi kepada manusia dan persekitaran walaupun selepas kaca itu retak. Objektif penyelidikan ini adalah untuk menyiasat prestasi kesan dan rintangan letupan LG PVB, LG EVA, LG PU Resin dan LG SGP. Metodologi dalam kajian ini dibahagikan kepada tiga bahagian utama. Bahagian pertama adalah untuk menentukan sifat mekanik kaca berlapis dengan interlayer yang berbeza. Kedua, kerja eksperimen untuk ujian impak dijalankan berdasarkan EN 356 dan ketiga adalah ujian letupan lapangan yang dijalankan mengikut ASTM F 1642-04 untuk mendapatkan data yang berkaitan dengan letupan dan juga untuk mengkaji kelakuan kaca berlapis dengan pemuatan letupan udara. Hasil ujian menunjukkan bahawa hanya LG SGP terselamat dalam ujian impak menggunakan 5.5 kg indenter keluli pada jarak 1.15m dapat menyerap sejumlah 65 Joule tenaga impak. Seterusnya, keputusan ujian letupan menunjukkan bahawa LG SGP, LG PU Resin dan LG PVB mampu menahan tekanan tinggi tekanan 337.84 kPa dan tekanan yang dicerminkan 4688.43 kPa. LG SGP adalah terbaik di kalangan kaca berlapis yang lain. Adalah dicadangkan bahawa SGP akan digunakan sebagai kaca tahan ledakan untuk bangunan yang dikenakan oleh serangan pengganas. Penyelidikan ini boleh memberi ilmu yang baru mengenai keselamatan manusia terhadap kaca.

ACKNOWLEDGEMENTS

This thesis was not an individual effort, and I would like to take opportunity to thank those people who supported and helped me along the way.

First, I would like to thank my supervisors, Assoc. Prof. Ir. Dr. Mohammed Alias bin Yusof and Brig Jen Prof. Ir. Dr. Norazman bin Mohamad Nor for their support and guidance over the past two years. Their encouragement and suggestions were there to complete this project.

I am also very grateful for all the material support which provided by the Secuglass Sdn. Bhd.

Finally, a big thank you to my family and friends, whose love and support goes without any recognition.

APPROVAL

The Examination Committee has met on 17th June 2020 to conduct the final examination of Lee Wei Szer on her master thesis entitled ' Behaviour of Laminated Glass Panels Subjected to Impact and Air Blast Loading'.

The committee recommends that the student be awarded the Master of Science (Civil Engineering).

Members of the Examination Committee were as follows.

Associate Professor Mohd Asri bin Md Nor

Faculty of Engineering

Universiti Pertahanan Nasional Malaysia

(Chairman)

Dr. Jestin binti Jelani

Faculty of Engineering

Universiti Pertahanan Nasional Malaysia

(Internal Examiner)

Ir. Dr. Agusril Faculty of Engineering Universiti Tenaga Nasional

(External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science** (**Civil Engineering**). The members of the Supervisory Committee were as follows.

Associate Professor Ir. Dr. Mohammed Alias bin Yusof

Faculty of Engineering

Universiti Pertahanan Nasional Malaysia

(Main Supervisor)

Brigadier General Professor Ir. Dr. Norazman bin Mohamad Nor (Bersara)

Faculty of Engineering

Universiti Pertahanan Nasional Malaysia

(Co-supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	:	Lee Wei Szer
Date of birth	:	15 th October 1991
Title	:	Behaviour of Laminated Glass Panels Sebjected to
Impact and Air Blast Loading		
Academic Session	:	2018 - 2020

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
/ OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/Chief Librarian

911015-12-5672 IC/Passport No. Ir. Dr. Mohammed Alias bin Yusof **Name of Supervisor/Dean of CGS/Chief Librarian

Date: August 2020

Date: August 2020

- Note: * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the organization stating the period and reasons for confidentiality and restriction.
 - ** Witness

TABLE OF CONTENTS

			Page
ABSTRACT	[ii
ABSTRAK			iii
ACKNOWL	EDGEN	MENTS	iv
APPROVAI			V
DECLARA	ΓΙΟΝ		vii
TABLE OF	CONTI	ENTS	viii
LIST OF TA	BLES		xi
LIST OF FI	GURES)	xii
LIST OF AI	BBREV	IATIONS	xiv
CHAPTER			
1	INTE	RODUCTION	
	1.1	Introduction	1
	1.2		4
	1.3	Objectives	5
	1.4	Scope of Research	6
	1.5	Significance of Research	6
	1.6	Thesis Layout	7
2	LITE	ERATURE REVIEW	
	2.1	Introduction	8
	2.2	Glass	8
	2.3	Production of Glass Panels	10
	2.4	Properties of Annealed Glass	11
	2.5	Type of Glass Panels Used in Buildings	12
		2.5.1 Annealed Glass	13
		2.5.2 Tempered Glass	14
		2.5.3 Laminated Glass	15
		2.5.3.1 LG PVB	18
		2.5.3.2 LG EVA	19
		2.5.3.3 LG SGP	20
		2.5.3.4 LG PU Resin	21
	2.6	Mechanical Properties Of Glass	22
	2.7	Behaviour Of Glass Subjected To Impact	24
	Load	ing	
	2.8	Air Blast Loading	29
	2.9	Prediction of Blast Loading	31
	2.10	Behaviour of Laminated Glass under Air Blast	33
	Load	0	
	2.11	Blast Resistant Glass Testing Standard	38
		2.11.1 Blast United States General Services	38
		Administration (GSA) Standard	
		2.11.2 International Organization for	41
		Standardization (ISO) Standard	
		2.11.3 ASTM F 1642-04 (2010)	43
	2.12	Field Blast Test	45
	2.13	Conclusion	46

METHODOLOGY

3.1	Introduction		
3.2	Research Design		
3.3	Experimental Works		
3.4	Research Material Used For The Experimental		
Work	XS		
	3.4.1 LG PVB		50
	3.4.2 LG EVA		51
	3.4.3 LG SGP		52
	3.4.4 LG PU Resin		53
3.5	Mechanical Properties Testing	5	54
	3.5.1 Tensile Strength Of Int		54
	3.5.1.1 Stress-Strain I		56
	3.5.2 Flexural Test Of Lami	nated Glass	57
	3.5.2.1 Modulus Of R	upture	59
	3.5.3 Compressive Test		59
3.6	Impact Test		61
3.7	Field Blast Test		64
	3.7.1 Research Material Use	ed For The	66
	Experimental Work		
	3.7.1.1 Fabrication O	f Glass Panel	66
	3.7.2 Explosive Material		67
	3.7.3 Blast Testing Frame		68
	3.7.4 Instrumentation Set U _I		71
	3.7.5 Peak Overpressure Ser		72
	3.7.6 Reflected Pressure Ser		72
	3.7.7 Free Field Blast Pressu Probe	ire Sensor Pencil	73
	3.7.8 High Speed Data Acqu	isition System	74
3.8	Blast Pressure Prediction		74
3.9	Conclusion		76
RES	ULTS AND DISCUSSION		
4.1	Introduction		77
4.2	Mechanical Properties		77
	4.2.1 Tensile Strength Of Int	terlayer	78
	4.2.1.1 Stress-Strain D	-	78
	4.2.1.2 Failure Mode	Of Interlayer	80
	Under Tensile Test	-	
	4.2.2 Flexural Test Of Lamin	nated Glass	81
	4.2.3 Compressive Strength	Test	83
	4.2.3.1 Failure Mode of	of Laminated Glass	84
	under Compression Te	est	
4.3	Impact Energy		85
	4.3.1 Impact Energy		85
	4.3.2 The Length of the Crae	ck	87
	4.3.3 Failure Mode of Lamin	nated Glass under	87
	Impact Loading		
4.4	Blast Test Result		90
	4.4.1 Blast Pressure Predicti	on	91

		4.4.2	Instrumented Data Result	93
		4.4.3	Peak Overpressure	94
		4.4.4	Reflected Pressure	96
		4.4.5	Free Field Pressure	96
		4.4.6	Failure Modes Of Glass Panel	98
			4.4.6.1 Failure Mode Of Sample 1 – LG PVB	98
			4.4.6.2 Failure Mode Of Sample 2 – LG EVA	100
			4.4.6.3 Failure Mode Of Sample 3 – LG PU Resin	103
			4.4.6.4 Failure Mode Of Sample 4 – LG SGP	104
			4.4.6.5 Summary Of The Result	105
5	CON	CLUSI	ON AND RECOMMENDATIONS	
	5.1	Introd	uction	108
	5.2	Conclu	usion	108
	5.3	Recon	nmendations	110
REFEREN	CES			111
BIODATA	BIODATA OF STUDENT 118		118	

LIST OF PUBLICATION

LIST OF TABLE

TABLE	TITLE	PAGE
NUMBER		
2.1	Chemical Composition of Soda Lime Silica Glass	9
2.2	The Properties of Annealed Glass	12
2.3	Mechanical Properties of Glass	23
2.4	Summary Results of Several Impact Loading	27
2	Experiments by Previous Researchers	_,
2.5	Summary Results of Several Blast Loading	36
2.5	Experiments by Previous Researchers	50
2.6	GSA Glass Protection Level	39
2.7	Hazard Rating Criteria for Arena Test	42
2.8	Hazard rating criteria	44
2.9	Advantages and Disadvantages of Field Blast Test	46
3.1	Tensile Strength Test Sample	54
3.2	Flexure Strength Test Sample	57
3.3	Compressive Strength Test Sample	59
3.4	Impact Test Sample	61
3.5	Hazard Rating Criteria	64
3.6	Details of the Glass Panels Fabricated for the	66
5.0	Experiment	00
4.1	Average Length of the Crack	87
4.2	The Summary of the Blast Test Results	106

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		IAUL
1.1	National Grand Theatre of China	2
1.2	Agbar Tower from Barcelona, Spain	3
1.3	Oslo Executive Government Building in Norway attack	5
2.1	Production process of glass	10
2.2	Type of glass panels used in building	12
2.3	Annealed glass	13
2.4	The shape of broken annealed glass due to blast loading	14
2.5	Tempered glass	14
2.6	The image of broken tempered glass due to blast loading	15
2.7	Laminated glass	16
2.8	Damage on the laminated glass due to blast loading	17
2.9	Manufacturing of LG PVB	18
2.10	Typical blast wave profile	30
2.11	Estimation of blast wave parameters for a hemispherical	33
2.11	TNT explosion	55
2.12	GSA performance conditions for window system	40
2.13	Hazard classification according to ASTM F 1642-04	43
2.15	(2010)	43
3.1	Overall research methodology	48
3.2	Experimental work	49
3.3	PVB sheets used in the experiment	50
3.4	LG PVB	50
3.5	EVA sheets used in the experiment	51
3.6	LGEVA	51
3.7	SGP sheets used in the experiment	52
3.8	LG SGP	52
3.9	PU Resin sheets used in the experiment	53
3.10	LG PU Resin	53
3.11	Dimension of specimens for tensile strength test	55
3.12	Instron Flexural testing machine	55
3.13	Dimension of specimens for flexural strength test	58
3.14	Instron Flexural testing machine	58
3.15	Dimension of specimens for compressive test	60
3.16	Compression test machine	61
3.17	Dimension of specimens for impact test	62
3.18	Instron CEAST 9350 Drop Tower	63
3.19	Flow chart of the experimental works	65
3.20	Laminated glass test sample	67
3.21	Sample of explosive, C4	78
3.22	Side view of testing frame	69
3.23	Blast testing frame (outside view)	70
3.24	Test set up for blast test	71
3.25	Piezoelectric ICP [®] pressure sensor	72
3.26	Piezoelectric ICP® reflected pressure sensor	73
3.27	Free field blast pressure sensor	73
3.28	High speed Data Acquisition System	74

3.29	Positive phase blast wave parameter	75
4.1	Tensile test result of PVB, EVA, PU Resin and SGP	78
4.2	The stress-strain diagram of various interlayer	79
4.3	Failure mode of PVB, EVA, PU Resin and SGP after tensile strength test	80
4.4	Flexural test result of LG PVB, LG EVA, LG PU Resin and LG SGP	81
4.5	Mode failure for flexural test of LG PVB, LG EVA, LG PU Resin and LG SGP	82
4.6	Compressive strength of LG PVB, LG EVA, LG PU Resin and LG SGP	83
4.7	Mode failure for compression test of LG PVB, LG EVA, LG PU Resin and LG SGP	85
4.8	Mode failure for impact loading test of LG PVB, LG EVA, LG PU Resin and LG SGP	90
4.9	Field blast test set up	91
4.10	Set up for Peak Overpressure and Reflected Pressure Sensors (Front view)	93
4.11	Set up for Free Field Blast Pressure Sensors (Side view)	94
4.12	Peak overpressure for pressure sensor 1	95
4.13	Peak overpressure for pressure sensor 2	95
4.14	Reflected pressure	96
4.15	Free field pressure for pencil probe 1	97
4.16	Free field pressure for pencil probe 2	97
4.17	LG PVB before and after blast tests	99
4.18	Perforations of LG PVB	100
4.19	LG EVA before and after the blast tests	101
4.20	Glass fracture splinter at distance less than 1000mm	102
4.21	Perforations of LG EVA	102
4.22	LG PU Resin before and after the blast tests	104
4.23	LG SGP before and after the blast tests	105

LIST OF ABBREVIATIONS

C4	Composition C-4
EVA	Ethyl Vinyl Acetate
PVB	Poly Vinyl Butyral
SGP	Sentry Glas® Plus
PU Resin	Polymer Resin
LG EVA	Laminated Glass with EVA interlayer
LG PVB	Laminated Glass with PVB interlayer
LG SGP	Laminated Glass with SGP interlayer
LG PU Resin	Laminated Glass with PU Resin

CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural glass scientifically known as obsidian, and had been utilised by man since prehistoric days. Glass was discovered in the Middle East around 7000 BC and have been in use in Egypt since 3500BC (Tsampiri, 2018). Later, glass bottles were developed in Egypt in 1500 BC. During the era of the Renaissance, coloured glasses, crystals and mirrors had all been developed and made in Venice (Adam et al., 2013). Glass is arguably, the most remarkable material ever discovered (Michael, 2014). Glass has been used in construction since 2000 years ago (Fatemeh, 2016). While in recent years, the application of glass in the field of construction has been widely developed because of the advantages of using glass has over other materials in building construction. The use of glass as a component of a building structure has been increasing since its initial introduction as a building material as windows in the early 19th century (Kashif, 2018). In response to the highly demanding market forces, new glass types have emerged in spot applications over the past two decades. It includes the high compressive strength, which has the ability to resists corrosion (Hess, 2004).

A revolution in the production of flat glass began in 1959 by Pilkington Ltd in Britain. Various architectural designs with the addition of intelligent engineering solutions have resulted in lots of stunning buildings all over the world. For example, The National Grand Theatre of China or also known as Bird's Egg, is an opera house in Beijing. The titanium and glass building of this structure was designed by French architect Paul Andreu. The exterior of the National Centre for the Performing Arts, like a steel-structured oval shell, is an ingenious material integration of over 18,000 titanium plates and over 1,000 sheets of ultra-white glass, which creates a vivid visual effect as if the curtain is drawn apart slowly before your eyes. With the weight of 6,457 tons and the longest axis of 696 feet (212 meters), the steel-structured oval shell is the largest dome in the world at present (Schmich et al., 2008). The National Grand Theatre of China is shown in Figure 1.1.



Figure 1.1 National Grand Theatre of China (Larry, 2020)

Other than the National Theatre of China, the Agbar Tower from Barcelona, Spain sometimes also known as Torre Agbar is a 21st Century skyscraper. The tower is 142m in height and is the third tallest building in Barcelona. This tower consists of 4,400 windows and 56,619 transparent and translucent glass plates. The louvers are tilted at different angles that will deflect the sunlight (Layetana et al., 2005). The Agbar Tower from Barcelona, Spain is shown in Figure 1.2.

Figure 1.2 Agbar Tower from Barcelona, Spain (Layetana et al., 2001)

In addition to the stunning glass structure all over the world, the glass properties also need to be improved to withstand the blast and impact loading. This can be done by providing various method to strengthen the glass structure such as by tempering and laminating process. One of the most common method used widely is provided laminating using various types of interlayer such as Poly Vinyl Butyral (PVB), Ethyl Vinyl Acetate (EVA), Sentry Glas® Plus (SGP) and also Polymer Resin (PU Resin) to improve the blast and impact resistance of the glass (Nurhuda, 2011).

1.2 Problem Statement

Today, most of the amazing buildings' facades are constructed using ordinary glasses and without much protection from damages, especially from terrorist attacks. Terrorist attacks and bombings of buildings and infrastructures have become a global phenomenon. For examples of the terrorist attacks in Norway (2011), Belgium Airport (2017) and Sri Lanka (2019) shows that most of the building façades are not capable of withstanding the blast loading from the explosions. For example, in the Norway attack in year 2011 as shown in Figure 1.3. The blast pressure from the car bomb smashed nearly all the glass windows of the Oslo Executive Government Building. 209 out of 325 injuries were involved with glass shatters (Zhang et al., 2012). This results in glass breakages, thus producing sharp structures. Most of the building façades are made up of laminated annealed glasses and also tempered glasses. This type of glasses will break into pieces. Laminated glass with PVB interlayer (LG PVB) have potential to resist blast and most of the researches have investigated on the properties of LG PVB (Pilkington Group Limited, 2010). However, in the recent development of the laminated glass industry, there are also several interlayers which are commonly used nowadays such as EVA, SGP and PU Resin have been developed. Currently, there is only limited research conducted on the LG PVB, laminated glass with SGP interlayer (LG SGP) and laminated glass with PU Resin interlayer (LG PU Resin). However, there is no research conducted to study the impact and blast resistant of laminated glass with EVA interlayer (LG EVA), LG PVB, LG SGP and LG PU Resin as an interlayer. Therefore, this research will study the behaviour of the interlayer PVB, EVA, SGP and PU Resin subject to

blast and impact loading. At the same time, also compare their performance when subject to blast and impact loading.

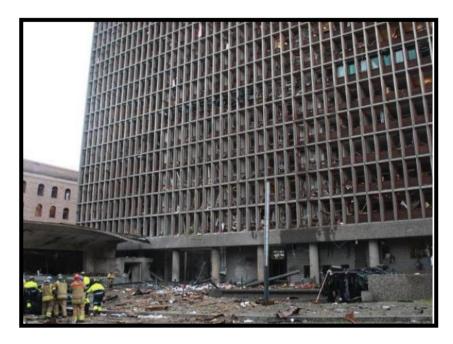


Figure 1.3 Oslo Executive Government Building in Norway attack

(Zhang et al., 2017)

1.3 Objectives

The main objectives of this study are as follows:

1. To determine the mechanical properties which includes tensile, flexural and compressive of interlayer glass panel.

2. To investigate the performance for impact resistance of LG EVA, LG PVB, LG SGP and LG PU Resin which are subjected to air blast and impact loading.

3. To investigate the performance for air blast resistance of LG EVA, LG PVB, LG SGP and LG PU Resin which are subjected to air blast and impact loading.

1.4 Scope of Research

The scope of this research is limited to determine the mechanical properties of the four types of laminated glasses which are tensile strength test of interlayer, flexural test of laminated glass and compressive strength test of laminated glass. Tensile strength test of the interlayer was based on ASTM D638-10 while flexural test of laminated glass was based on ASTM C158-02. As for compressive strength test of laminated glass were based on the ASTM C39. Next, impact test was conducted based on EN 356 classes P1A to P5A. Lastly, field blast testing was carried out according to ASTM F 1642-04 to obtain the blast related data and also to investigate the behaviour of the 6.76mm of LG PVB, 6.76mm of LG EVA, 7mm of LG PU Resin and 6.89mm of LG SGP subjected to air blast loading.

1.5 Significance of Research

This research is expected to contribute new knowledge on safety to human as glass is widely used in all areas and the data on the impact and blast resistance behaviour of laminated glasses with different types of interlayer which include LG PVB, LG EVA, LG SGP and LG PU Resin.

1.6 Thesis Layout

This thesis dissertation consists of five chapters. Chapter one gives the reader an introduction to this study and all the objectives have been derived from the problem statement.

Chapter two shows an overview of the laminated glasses used in this research project which is manufacturing process of glass, mechanical properties of interlayers, types of laminated glasses, laminated glass materials used for impact loading, air blast loading, the prediction of blast loading, experiments that have been conducted by other researchers previously, standard use for mechanical properties, impact loading test and blast test.

Chapter three discusses on the methodology and materials used in this research project. A specific approach in conducting the experimental works, preparation of materials and field blast tests is discussed in this chapter.

Chapter four presents the results for experimental work and then discusses the experimental work in this chapter.

Chapter five presents the conclusion obtained from this research and also the recommendations for future work.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Glass is manufactured from some cheap raw materials which is easily available in large quantity and most importantly glass can be recycled and often considered as environmental friendly. Besides, the majority of glass used nowadays is either sheet glass or glass moulded into jars or bottles. About 95 % of sheet glass is used for glazing in houses and factories, with the remaining 5 % used for making mirrors or are toughened materials for the use in domestic appliances such as ovens and nearly 40 % of the total glass wares are exported (Stephanie et al., 2002).

2.2 Glass

According to Lenntech (2018), the term 'glass' is often referred as a hard material, but it is normally fragile and transparent. It is composed mainly of sand or silicates, SiO_2 and an alkali. These materials are fused together at a high temperature and cooled rapidly to form a rigid structure.

However, glass does not have enough time to form regular crystalline structure. The composition of glass and its cooling rate depends on the final use and the application of glass which will achieve the adequate properties for the specific application.

Silica based materials are the most popular chemical used to manufacture glass. This type of glass is also suitable to be used in designing architectural and automotive glasses, containers, table glassware, glass wool for heat insulation and decorative objects. However, glass nowadays is made basically from many different compositions using a wide variety of processes in giving the end products with better properties and applications (Lenntech, 2018). Table 2.1 shows the chemical composition of siliconsoda-lime glass according to European construction standards.

Silica sand	SiO ₂	71 - 73%
Soda	Na ₂ O	11 - 12.2
Boron-oxide	B ₂ O ₂	7 – 15 %
Potassium oxide	K ₂ 0	0-2 %
Alumina	Al ₂ 0 ₃	0-8 %
Calcium oxide	CaO	12 - 14 %
Magnesium oxide	MgO	1.1 - 2.0 %
Iron oxide	Fe ₂ O ₃	0-2 %

Table 2.1 Chemical Composition of Soda Lime Silica Glass*

* Adapted from Kumar et al. (2002)

2.3 **Production of Glass Panels**

Glass is produced by the float process, which was introduced by Pilkington Brothers Ltd in the 1950s (Olive et al., 1985). The production of glass panel consists of four main steps which are batching, melting, fining, and forming. These processes are shown in Figure 2.1.

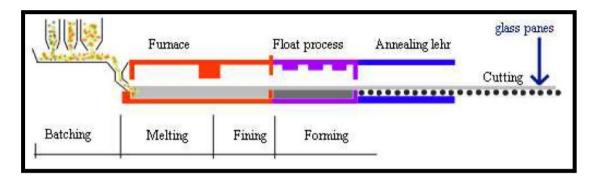


Figure 2.1 Production process of glass (Lam et al., 2011)

According to Lam et al. (2011) initially glass making was a batching process. In this process, all the raw materials such as sand, soda ash, limestone, dolomite and alumina were selected and weighed accordingly in the batching process and soda ash was added. The purpose of adding soda ash is to expedite the melting process. The function of the limestone is to make the glass become more durable. In addition, the function of the dolomite is to increase the working and weathering properties.

Next is the melting process. In this process, all the raw materials are melted in a furnace at 1500°C. Finally, the melted raw materials go through the fining process. At this stage of the fining process is to produce a homogenous and bubble free molten gas, which can be obtained by regulating the temperature and adding of fining agents.