EFFECT OF PILE EMBEDDED IN SAND ON LOAD CARRYING CAPACITY AND SERVICEABILITY LIMITS USING NEW

INSTALLATION METHOD

NOR SYAMIRA BINTI HASSAN

MASTER OF SCIENCE (CIVIL ENGINEERING)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2021

EFFECT OF PILE EMBEDDED IN SAND ON LOAD CARRYING CAPACITY AND SERVICEABILITY LIMITS USING NEW INSTALLATION METHOD

NOR SYAMIRA BINTI HASSAN

Thesis submitted to Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science (Civil Engineering)

2021

ABSTRACT

Due to heavy works at construction sites, method of pile installation is considered as one of the factors that can affect the progress of a project. Well known methods such as jacking, dropping weight, vibration and explosion have been used at sites. It was observed to have some drawbacks during the installation process such as high resistance due to friction and high settlements that can cause failure to the structure. This study is aimed to determine the performance of pile behaviour using a common and a new method of pile installation and to determine its effects on the load-carrying capacity from the axial working load. The rotary-jacking technique is a new technology of installation where jacking and rotating movements happen simultaneously during the process. A stainless steel 25 mm circular pile, a 50 mm circular pile and a screw pile were fabricated as tested piles in this study. A laboratory model setup is used as a physical model to compare with the existing theoretical values calculated using Meyerhof's theory. This study was administered in two phases where the initial phase is the installation of piles by using two different methods namely jacking and jacking and rotary method. The second phase involves carrying out static load tests for obtaining the ultimate pile capacity. From the results, when 25 mm circular pile is used, it was discovered that the jacking and rotary method requires less loading compare to jacking method during installation when 0.300 kN of loading which is smaller than 0.600 kN due to the change in direction and magnitude of the base and the pile shaft resistance. Load carrying capacity has proven that new method of installation is best chosen when 50 mm circular pile was used, and this was shown in the result of 0.491 kN, which is near to the designed pile load (0.424 kN). For future studies, bigger sized piles are advised to be utilized to reduce load settlement. In conclusion, the jacking and rotary method can be used as alternative practised to be chosen for construction in the future.

ABSTRAK

Disebabkan kebanyakan kerja yang dijalankan di tapak pembinaan adalah yang berisiko tinggi, kaedah pemasangan cerucuk telah diambil kira sebagai salah satu faktor yang dapat mempengaruhi kemajuan pencapaian projek. Kaedah yang sering digunakan seperti sistem cerucuk jek, penukul jatuh bebas, ayunan dan letupan dikenal pasti mempunyai masalah semasa proses pemasangan cerucuk seperti rintangan tinggi kerana geseran dan berlaku kadar pemendapan yang tinggi yang menyebabkan kegagalan pada struktur bangunan. Kajian ini bertujuan untuk mengetahui prestasi cerucuk apabila menggunakan kaedah pemasangan yang biasa dan juga kaedah baru, juga mengetahui kesannya terhadap daya bawa muatan dari beban kerja paksi. Teknik putaran dan jek adalah teknologi pemasangan baru diperkenalkan di mana pergerakan yang dilakukan seperti putaran dan jek tersebut berlaku secara serentak. Cerucuk keluli tahan karat berbentuk bulat berdiamater 25 mm, 50 mm dan cerucuk skru diuji dalam kajian ini. Penyediaan model makmal digunakan sebagai model fizikal untuk dibandingkan dengan nilai teori yang dikira menggunakan teori Mayerhof. Kajian ini dilaksanakan dalam dua fasa di mana fasa pertama adalah pemasangan cerucuk dengan menggunakan dua kaedah yang berbeza, iaitu sistem cerucuk jek dan putaran dan jek. Fasa kedua melibatkan ujian beban statik untuk mendapatkan kapasiti bebanan cerucuk. Hasil kajian mendapati bahawa kaedah putaran dan jek memerlukan bebanan yang lebih kecil berbanding dengan sistem cerucuk jek dan rintangan yang lebih sedikit iaitu 0.300 kN berbanding dengan 0.600 kN kerana berlaku perubahan arah dan juga magnitud ke atas rintangan asas dan poros cerucuk. Beban daya muatan cerucuk kaedah pemasangan baru perlu dipilih apabila apabila cerucuk membuktikan berdiamater 50 mm yang digunakan menunjukkan bacaan kapasiti bebanan sebanyak 0.491 kN hampir sama dengan bacaan bagi rekaan bebanan cerucuk (0.424 kN). Untuk kajian yang akan datang, saiz cerucuk yang lebih besar disarankan untuk digunakan bagi mengurangkan mendapan beban. Kesimpulannya, kaedah putaran dan jek boleh digunakan sebagai alternatif untuk dipraktikkan bagi pembinaan pada masa akan datang.

ACKNOWLEDGEMENT

Bismillahirahmanirrahim,

Alhamdulillah, finally I am able to finish my Master Thesis research. First and foremost, I want to thank our almighty Allah for the intelligence, strength, mental serenity, and good health that He has bestowed upon me in order to complete this research.

I want to thank my supervisor, Assoc. Prof. Dr. Aniza Binti Ibrahim, for her willingness to spend so much time guiding, motivating, and supporting me till I finish this project. I would never have made it this far without her patience, flexibility, real caring, concern, and faith in me during the study process.

I also would like to thank my husband Muhammad Anas Bin Mohd Rosdi, for his endless support, patience and unfailing love. I appreciate my parents, my family and my family in law, I owe a big debt of gratitude to them for their endless love, blessing and supporting me in all my pursuit. Not to forget my lovely son, Muhammad Adam Sufyan who was born during my study, thank you for always making me stronger.

This acknowledgement also goes to my lecturers, laboratory assistants, fellow friends, and juniors for all the cooperation and support from the start to the finish of this research. I am also indebted to the university, Universiti Pertahanan Nasional Malaysia (UPNM) for all the references given for this project.

Last but not least, I would like to extend my sincere thanks to all individuals who are involved directly and indirectly giving me kind support and help throughout my master journey. Thank you.

APPROVAL

The Examination Committee has met on 05th May 2021 to conduct the final examination of Nor Syamira Binti Hassan on his degree thesis entitled 'Effect of Pile Embedded in Sand on Load Carrying Capacity and Serviceability Limits using New Installation Method'

The committee recommends that the student be awarded the Master of Science (Civil Engineering).

Members of the Examination Committee were as follows.

Professor Ir Mohammed Alias bin Yusof

Faculty of Engineering, Universiti Pertahanan Nasional Malaysia, (Chairman)

Dr Mohd Nazrin Bin Mohd Daud

Faculty of Engineering, Universiti Pertahanan Nasional Malaysia, (Internal Examiner)

Professor Ir Ramli Bin Nazir

Senior Deputy Director, Centre of Tropical Geoengineering, Universiti Teknologi Malaysia (External Examiner)

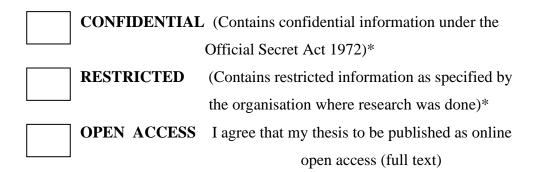
APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirement for the degree of **Master of Science (Civil Engineering).** The members of the Supervisory Committee were as follows.

Assoc. Prof. Dr Aniza Binti Ibrahim

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Dr Zuliziana Binti Suif


Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

	DECLARATION OF THESIS
Student's full name	: <u>Nor Syamira Binti Hassan</u>
Date of birth	: <u>13th June 1990</u>
Title	: Effect of Pile Embedded in Sand on Load Carrying Capacity and Serviceability Limits using New Installation Method
Academic Session	: 2020/2021

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

900613-03-5788 IC/Passport No **Signature of Supervisor

Assoc. Prof. Dr Aniza Binti Ibrahim **Name of Main Supervisor

Date:

Date:

Note : * If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the organisation stating the period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENT

PAGE

ii
iv
vi
vii
ix
Х
xiii
XV
xviii
xix
XX

CHAPTER

1	INTRODUCTION	1
	1.1 Background	2
	1.2 Problem Statement	5
	1.3 Objectives of Research	5
	1.4 Scope of Research	6
	1.4.1 Pile Installation Method by Using Jacking	
	Method and Jacking-Rotating Method	6
	1.4.2 Static Load Test of the Piles	6
	1.5 Research Limitation	7
	1.6 Significant of Research	7
	1.7 Research Hypothesis	7
	1.8 Research Outline	
2	LITERATURE REVIEW	9
	2.1 Introduction	9
	2.2 History of Pile	10
	2.3 Use of Standard	11
	2.4 Type of Pile	12
	2.4.1 Classification of Piles According to The Method of Installation of Piles	13
	2.4.2 Classification of Piles on The Basis of Load Transfer	14
	2.4.3 Classification of Piles Based on Materials of Piles	15
	2.5 Method of Pile Installation	15
	2.5.1 Jacking Method	18
	2.5.2 Rotary Press-In Method	19
	2.5.2.1 Rotary Installation by Gyro Press Method	20
	2.5.2.2 Rotary Bored Piling	21

2.6 Pile Driven in Sand	21
2.7 Settlement of Piles in Sand	23
2.8 Static Load Test	24
2.9 Development of Pile Bearing Capacity	25
2.9.1 Ultimate Bearing Capacity, Q_{μ}	26
2.9.1.1 Terzaghi's Bearing Capacity Theory	27
2.9.1.2 Meyerhof's Bearing Capacity Theory	30
2.10 Previous Researches	32
2.10.1 Summary of Previous Researches	39
2.11 Research Gap in Pile Installation	43
METHODOLOGY	44
3.1 Introduction	44
3.2 Basic Soil Properties	46
3.3 Fabricating of Piles	46
3.4 Apparatus and Materials	49
3.4.1 Rotary-Jacking Machine	49
3.4.2 Stainless Steel Container	51
3.4.3 Rotary and Jacking Motors	51
3.4.4 S-Beam Load Cell	52
3.4.5 A Control Panel Box	53
3.4.6 Control Operating System	53
3.4.7 Linear Variable Displacement Transducer (LVDT)	54
3.4.8 Pile Positioning Frame	55
3.4.9 Pile Casing with Linear Bearing Ball	56
3.4.10 Reaction load Plate	56
3.4.11 Pile Grip Frame	57
3.4.12 Reaction loads	58
3.5 Testing Procedures	58
3.5.1 Sand Compaction	59
3.5.2 Theoretical Pile Capacity	60
3.5.3 Pile Installation	61
3.5.3.1 Jacking Method	63
3.5.3.2 Jacking and Rotary Method	64
3.5.4 Penetration Rate	65
3.5.5 Effect of Different Pile Sizes	65
3.6 Static Load Test	66
3.6.1 Jacking Method	70
3.6.2 Jacking and Rotary Method	70
3.6.3 Graphical Method to Determine Pile Capacity	70
RESULT AND DISCUSSION	72
4.1 Introduction	72
4.2 Soil Properties	72
4.2.1 Dry Sieving Test	73
4.2.2 Soil Compaction Test	74
4.2.3 Direct Shear Test	75
4.3 Evaluation of Static Load Test by Using Theoretical Method	77

3

4

	4.4 Installation of Pile	81
	4.4.1 Jacking Method	81
	4.4.2 Jacking and Rotary Method	82
	4.4.3 Result of Pile Installation	85
	4.4.4 Rate of Pile Penetration	88
	4.4.5 Effect of Pile Sizes	93
	4.4.6 The Relationship Between Rotary Condition and	94
	Resistance 4.5 Static Load of Piles	05
		95 95
	4.5.1 Result of Jacking Method	95
	4.5.2 Result of Applying the Jacking and Rotary Method	101
	4.5.3 Comparison of Pile Settlement between the	
	Jacking Method and the Jacking and Rotary Method	105
	4.5.4 Comparison of the Rate of Penetration between	
	the Jacking Method and the Jacking and Rotary Method	105
	4.5.5 Evaluation of Static Load Test by Using Graphical Method	106
	4.5.6 Summary of Static Load Test	114
5	CONCLUSION AND RECOMMENDATION FOR	119
5	FUTURE WORKS	
	5.1 Introduction	119
	5.2 Conclusions	119
	5.3 Recommendations for Future Works	122
REFERENCES		124
APPENDICES		129
BIODATA OF S	STUDENT	139
LIST OF PUBL	ICATION	140

LIST OF TABLES

TABLE N	O. TITLE	PAGE
Table 2.1	Types of Pile Materials	16
Table 2.2	The Advantages and Disadvantages of Rotary Bored Piling	21
Table 2.3	The Coefficient of Friction Between Sand and Pile Surface	22
Table 2.4	Load Settlement Parameters	23
Table 2.5	Typical Values of Factor of Safety	27
Table 2.6	Terzaghi's Bearing Capacity Factors	29
Table 2.7	Meyerhof's Bearing Capacity Factor	31
Table 2.8	Summary of Previous Research	41
Table 3.1	Dimension of the Piles	48
Table 3.2	Summary of Tested Pile with Different Sizes of Pile	63
Table 4.1	Basic Soil Properties	73
Table 4.2	Typical Value from Particle Size Distribution Chart	74
Table 4.3	Maximum Shear Stress and Normal Stress	76
Table 4.4	Shear Strength Properties	76
Table 4.5	Pile Parameters	78
Table 4.6	The Ultimate Point, Q _P	78
Table 4.7	Details for Frictional Resistance Calculation	79
Table 4.8	Pile Skin Angle Friction, δ	79
Table 4.9	Frictional Resistance, Q _S by First Equation	80
Table 4.10	Frictional Resistance, Q _S by Second Equation	80
Table 4.11	Average frictional resistance $(Q_{S 1}/Q_{S 2})$	80
Table 4.12	Theoretical Ultimate Bearing Capacity	81
Table 4.13	Theoretical and Test Loading Ultimate Bearing Capacity	81
Table 4.14	Summary of Load Require for Pile Installation	85

Table 4.15 Penetration Rate by Different Method of Installation	90
Table 4.16 Design Features of Pile	106
Table 4.17 Ultimate Pile Capacity for Jacking Method by Brinch Hansen 80%	107
Table 4.18 Ultimate Pile Capacity for Jacking and Rotating Method by Brinch Hansen 80%	107
Table 4.19 Ultimate Pile Capacity by Tangent	111

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1 Clas	sification of Pile Foundation	12
Figure 2.2 Ana	logy of Driven Pile	13
Figure 2.3 Ana	logy of Bored pile	14
Figure 2.4 The	Illustration of Jacked Pile at Construction Site	18
Figure 2.5 The	Illustration of Using Rotary Method at Construction Site	19
Figure 2.6 Rota	ation Driving by Principle of Giken Technology (Hazla, 2013	3) 20
Figure 2.7 Load	d Settlement Curve	24
Figure 2.8 The	Application of Pile Load Test in Construction Site	25
Figure 2.9 Terz	zaghi's bearing capacity theory	28
0	e Relationship Between Angle of Internal Friction and Bearin pacity Factor of Terzaghi's Theory	g 29
Figure 2.11 Me	yerhof's Bearing Capacity Theory	30
0	e Relationship Between Angle of Internal Friction and ring Capacity Factor Meyerhof's Theory	31
Figure 2.13 Cor	nponent of Pile (Aponna & Sholeh, 2019)	33
Figure 2.14 Pile	e Load Test Setup in The Laboratory (Leong et al., 2010)	34
Figure 2.15 The	e Analogy of Q and T (Ishihara et al., 2015)	36
U	Relationship Between Pile Head and Penetration Depth to et al., 2018)	37
0	ad-Settlement Curve Obtain from The Field Test gun et al., 2017)	38
0	paration for Pile Installation in The Laboratory les et al., 2017)	39
Figure 3.1 Flow	v Chart of Research	45
	ign of pile: (a) 25 mm Circular pile, (b) 50 mm Circular pile, Screw pile	47

Figure 3.3 Typical Details Dimension of Pile	48
Figure 3.4 Rotary Jacking Machine with a Special Design Wedges And Barrel System	50
Figure 3.5 A Schematic Diagram of Rotary-Jacking Machine	50
Figure 3.6 A Stainless Steel Container	51
Figure 3.7 Rotary and Jacking Motors	52
Figure 3.8 S-Beam Load Cell is Positioned Between the Both Motors	52
Figure 3.9 Control Panel Box	53
Figure 3.10 Operating System Inside Box Panel	54
Figure 3.11 Linear Variable Displacement Transducer (LVDT)	55
Figure 3.12 Pile Positioning Frame	55
Figure 3.13 Pile casing with Linear Bearing Ball	56
Figure 3.14 Pile Grip Frame with Connected Screws	57
Figure 3.15 Reaction load Plate with Rounded Plate and Rod	57
Figure 3.16 Reaction load Used for Static Load Test	58
Figure 3.17 The Connection of Analog Input, Output and Battery of the Datalogger	59
Figure 3.18 Steps for Pile Installation	65
Figure 3.19 Static Load Test Procedures	68
Figure 3.20 Schematic Diagram of Static Load Test	69
Figure 3.21 Schematic Diagram of the Test Procedure	69
Figure 4.1 Particle Size Distribution Chart	73
Figure 4.2 Result of Soil Compaction Test	75
Figure 4.3 Result of Direct Shear Test	75
Figure 4.4 Result of Shear Stress Vs Normal Stress	76
Figure 4.5 Result of Bearing Capacity Factor, Nq	78
Figure 4.6 Result of Pile Installation for Jacking Method	83
Figure 4.7 Result of Pile Installation for Jacking and Rotary Method	84

Figure 4.8	Percentage of pile loading at 150 mm Depth of Installation	87
Figure 4.9	Percentage of pile loading at 300 mm Depth of Installation	88
Figure 4.10	Result of Pile Penetration by Loading Vs Time Taken	91
Figure 4.11	Result of Pile Penetration by Depth Vs Time Taken	92
Figure 4.12	Combination of Piles by Using Jacking Method and Jacking and Rotary Method	94
Figure 4.13	Result of Load Vs Settlement by Jacking Method	98
Figure 4.14	Result of Settlement Vs Time by Jacking Method	99
Figure 4.15	Comparison of Pile Settlement by Jacking Method	100
Figure 4.16	Comparison of Rate of Pile Penetration by Jacking Method	100
Figure 4.17	Result of Load Vs Settlement by Jacking and Rotary Method	102
Figure 4.18	Result of Settlement Vs Time by Jacking and Rotary Method	103
Figure 4.19	Comparison of Pile Settlement by Jacking and Rotary Method	104
Figure 4.20	Comparison of Rate of Penetration Rate by Jacking and Rotary Method	104
Figure 4.21	Result of Brinch Hansen 80% Method by Jacking for (a) 25 mm Circular Pile, (b) 50 mm Circular Pile, (c) Screw Pile	108
Figure 4.22	Result of Brinch Hansen 80% Method by Jacking and Rotary for (a)25 mm circular pile, (b) 50 mm circular pile, (c) Screw pile	109
Figure 4.23	Result of Tangent Method by Jacking for (a) 25 mm Circular Pile, (b) 50 mm Circular Pile, (c) Screw Pile	112
Figure 4.24	Result of Tangent Method by Jacking and Rotary for (a) 25 mm Circular Pile, (b) 50 mm Circular Pile, (c) Screw Pile	113
Figure 4.25	Graphical Evaluation by Jacking Method	116
Figure 4.26	Graphical Evaluation by Jacking and Rotary Method	117
Figure 4.27	Summary of The Ultimate Pile Capacity for Jacking Method	117
Figure 4.28	Summary of The Ultimate Pile Capacity for Jacking Method	118
Figure 4.29	Percentage Changes (%) between Jacking Method and Jacking and Rotary Method	118

LIST OF EQUATION

EQUATION	NO. TITLE	PAGE
Equation 2.1	Allowable Bearing Capacity	27
Equation 2.2	Strip Footings	28
Equation 2.3	Square Footings	28
Equation 2.4	Circular Footings	28
Equation 2.5	Meyerho'f Theory Equation	30
Equation 3.1	Ultimate Point of Pile Settlement	60
Equation 3.2	Pile Point Load	60
Equation 3.3	First Equation Frictional Resistance	61
Equation 3.4	Second Equation Frictional Resistance	61
Equation 3.5	Empirical Equation	61
Equation 3.6	Penetration Rate	65
Equation 3.7	Factor of Safety	70
Equation 3.8	Brinch Hansen 80% Equation	71

LIST OF ABBREVIATI ONS

BS	-	British Standard
EN	-	Eurocode
ASTM	-	American Society for Testing Materials
SPT	-	Standard Penetration Test
CPT	-	Cone Penetration Test
FOS	-	Factor of Safety
Qu	-	Ultimate Bearing Capacity

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A:	Physical Modelling Test	129
Appendix B:	Modelling Test Result	135

CHAPTER 1

INTRODUCTION

1.1 Background

Pile foundations are used to transfer load of the structure from the surface of the ground to below ground. There are two components of foundations which are piles and pile caps. Piles are basically long and slender structures that are buried into the ground to take the weight deep underground to support and transfer load from the structure to the deeper part of the ground. Piles are placed in the ground, and often touch rocks and solid ground. Load transferring and pile materials used in the project are dependent on the types of soil at the site.

Pile driving is one of the main tasks of constructing a building. It is one of the main elements in the construction process as it will ensure that the structure has enough strength to withstand the load. Installing and driving piles into the ground can be performed by using pile driving methods for displacement piles and boring methods for piles replacement. Normally, pile driving methods such as jacking would use static hydraulic force to install displacement piles. By using hydraulic rams, the static jacking force is used to eliminate ground vibration and noise in nearby construction areas.

Choosing a suitable pile type for the structure is considered the most important step to ensure that the structure is strong enough. The type of piles selected depends on a broad range of variables, such as soil type, erosion, local availability and cost, the manpower and the foundation's load-bearing requirements (Adejumo & Boiko, 2012). Piles can be classified into two types: driven or displacement piles, and bored or replacement piles.

In this project, a new concept of pile installation was introduced. When penetrating the piles into the ground, the piles are rotated and jacked directly into the ground. When the piles are rotating, jacking resistance decreases due to the change of directions and the magnitude of the base and shaft resist towards the piles. This new technique can help the piles to drive into the sand with less time taken, and less resistance occurring between the surface of the pile, and the sand medium.

1.2 Problem Statement

Pile installation is commonly related to pile resistance. This is due to the resistance that exists between the pile surface and sand when the pile is driven into the sand medium. Previous research by Norkus & Martinkus (2019) stated that, at the loading points, the ground resistance of the single pile is evaluated by stress distribution under pile base and the piles skin surface. The resistance from the piles will increase when friction between both surfaces is slightly increase. Resistance will decrease when the pile is driven in smoothly with less friction. Since piles are installed using static analysis methods and the real pile resistance is tested during construction phase, achieving the pile resistance assumed in design presents some challenges (Ng

& Sritharan, 2014). It is understood that, the chemical effects created from bonding of sand and pile surface can increase the stiffness and changes in stress surrounding the piles for a long-term period. This may cause stress on pile shaft to increase and this may be the possible reason to the increase of resistance and pile capacity in sand (Chow et al, 1998).

The timeline of a project is important to ensure that the work in progress is completed within the time given. Time taken to install the piles is one of the main factors that has to be considered when choosing the method of installing the piles. Previous researches have proven that the hammering method takes longer time to finish during pile installation. This situation will leave an impact on the timeline of a project and the cost of the project will gradually increase. According to a previous study by Chen et al (1999), the changes in pile capacity is observed with the time taken during the pile installation due to the excess pore water pressure after installation of pile was completed in few hours. However, the increase in pile capacity in sand has three possible reasons which can lead to these conditions. These are the chemical effects that can cause the bonding between sand particle and pile surface, stress that occurs surrounding the pile surface for a long term changes and effects of soil aging that can increase dilation stiffness and strength.

Pile settlement is one of important part to be observed during the installation phase because it can cause major problem to the structure. The settlement can be achieved by sum of pile heel settlement and elastic deformation of pile (Gabrielaitis et al., 2013). The conclusive criteria for any design should be investigated whether the pile settlements at working loads are within the reasonable limits of the supported