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ABSTRACT 

 

Chemiresistive-based sensor using poly(3-hexylthiophene-2,5-diyl) (P3HT) 

demonstrates high sensitivity and selectivity towards organic compound, however, 

P3HT can be easily oxidized in natural environment hindering its electrical 

performance. Thus, highly conductive functionalize multiwalled carbon nanotubes (f-

MWCNT) are introduced to P3HT in order to increase its stability and sensitivity 

towards malathion. To understand intermolecular interaction between f-MWCNT and 

P3HT, f-MWCNT (-OH, -COOH, -F and NH2) was introduced as sensing material. 

The P3HT/f-MWCNT nanocomposites were fabricated using filtration, spin coating, 

and drop-casting methods. The nanocomposite films were characterized by UV-Vis, 

Photoluminescence, Fourier Transform Infrared (FTIR), and Raman spectroscopies. 

FESEM and HR-TEM images were used to analyse the P3HT wrapped f-MWCNT 

nanostructures. The I-V measurement were used to examine the stability and 

sensitivity of the sensor. FTIR spectra of P3HT/f-MWCNT shows three major regions 

of vibrational modes; (i) C-H vibration belonged to aliphatic chain of hexyl groups, 

(ii) C=C stretching modes, and (iii) 909 cm-1 peak that represented out-of-plane 

bending vibration of cis-HC=CH− group. The last peak arises from the effect of 

crystallinity in P3HT chains. G-band peak shift in Raman spectra and increase of ID/IG 

ratio is due to formation of more ordered structures after the polymer incorporation. 

The origin of -π interaction between P3HT and f-MWCNT was also detected in UV-

visible absorption and photoluminescence spectra. The electron images revealed non-

covalent polymer wrapping on f-MWCNT as evidenced by increase in f-MWCNTs’ 

diameter. According to our amperometric studies, P3HT wrapped f-MWCNT showed 
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promising sensitivity in detecting the organophosphate (OP) simulant, malathion. The 

sensitivity towards malathion was examined using current-voltage characterization in 

range 0.1 to 500 ppb. The calculated limit of detection (LOD) was 0.07 ppb. Our 

findings concluded that functional group on MWCNT especially the -OH group, π-π 

stacking population, π-electron H interaction and hydrophobic surface play an 

important role in giving improved sensitivity of polymer CNT based chemiresistive 

sensor. 
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ABSTRAK 

 

Penderia berasaskan kemirisistif menggunakan poli(3-hexylthiophene-2,5-

diyl) (P3HT) menunjukkan kepekaan dan selektiviti yang tinggi terhadap sebatian 

organik, walau bagaimanapun, P3HT mudah teroksida dalam persekitaran semula jadi 

yang boleh menghalang prestasi elektriknya. Oleh itu, nanotube karbon berbilang 

dinding yang konduktif (f-MWCNT) diperkenalkan kepada P3HT untuk 

meningkatkan kestabilan dan sensitivitinya terhadap malathion. Untuk memahami 

interaksi antara molekul antara f-MWCNT dan P3HT, f-MWCNT (-OH, -COOH, -F 

dan NH2) telah diperkenalkan sebagai filem penderiaan Nanokomposit P3HT/f-

MWCNT telah difabrikasi menggunakan kaedah penapisan, salutan putaran dan 

titisan. Filem nanokomposit telah dicirikan oleh spektroskopi UV-Vis, 

Photoluminescence, Fourier Transform Infrared (FTIR), dan Raman. Imej daripada 

FESEM dan HR-TEM telah digunakan untuk menganalisis struktur nano f-MWCNT 

yang telah dibaluti oleh P3HT. pengukuran I-V pula digunakan untuk memeriksa 

kestabilan dan sensitiviti sensor. Spektrum FTIR P3HT/f-MWCNT telah 

menunjukkan tiga kawasan utama mod getaran; (i) getaran C-H dalam rantaian alifatik 

kumpulan heksil, (ii) mod regangan C=C, dan (iii) puncak 909 cm-1 pula mewakili 

getaran lentur luar satah untuk kumpulan cis-HC=CH−. Puncak terakhir tersebut 

terhasil akibat kesan penghabluran dalam rantaian P3HT. Puncak G-band dalam 

spekrum Raman telah menunjukkan anjakan dan terdapat peningkatan nisbah ID/IG 

disebabkan oleh pembentukan struktur yang lebih teratur selepas penggabungan 

polimer. -π interaksi antara P3HT dan f-MWCNT juga dapat dikesan dalam spektrum 

penyerapan UV-Vis dan Photoluminesen. Dengan peningkatan diameter f-MWCNT 
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dalam imej elektron ia telah membuktikan bahawa balutan polimer bukan kovalen 

pada f-MWCNT. Menurut kajian amperometrik, f-MWCNT dalam balutan P3HT 

menunjukan keberkesanan sensitiviti terhadap simulan, organofosfat (OP), malathion. 

Kepekaaan malathion terhadap P3HT/f-MWCNT telah dikaji dengan menggunakan 

pencirian voltan arus dalam julat 0.1 hingga 500 ppb. Had pengesanan (LOD) yang 

dikira ialah 0.07ppb. Kesimpulannya, hasil penemuan yang kami perolehi meunjukkan 

bahawa kumpulan berfungsi MWCNT terutamanya kumpulan -OH menunjukkan 

keberhasilan populasi susunan π-π, dan permukaan yang hidrofobik memainkan 

peranan penting dalam kepekaan sensitiviti yang baik bagi penderiaan kemiresistif 

berasaskan CNT-polimer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

ACKNOWLEDGEMENTS 

 

At the end of my thesis, I would like to thanks all of the people who have 

assisted me during my lab work and I had an enjoyable experience. First and foremost, 

I would like to thank my supervisor, Assoc. Prof. Ts. Dr. Norhana Binti Abdul Halim 

who has given me valuable advice and guidance. I would like to thank Dr for spending 

time to help me solve the problems that occured in my lab work and while writing the 

thesis. Also, to my co-supervisor Dr. Siti Zulaikha binti Ngah Demon, Assoc. Prof. 

Dr. Norli binti Abdullah and Dr. Muhammad Zamharir bin Ahmad for the opportunity 

to be part of their research group, for their guidance, continuous support and also my 

funding throughout my Master’s study. I thank them for the numerous discussions and 

encouragements when I encountered difficulties in my research. I would like to thank 

my teammates in UPNM for helping me towards the accomplishment of this research 

work. Thank you for all your technical assistance and cheerful moments. Finally, I also 

like to express my deepest gratitude and thanks to my beloved family. I am grateful 

too for amazing family members who always give me support in every aspect and who 

have been a source of encouragement and inspiration to me throughout my life. Once 

again, thank you to all who have contributed to my studies. 

 

 

 

 

 

 



 

 

vii 

APPROVAL 

 

The Examination Committee has met on Date of Viva Voce to conduct the final 

examination of Nurul Syahirah Nasuha binti Sa’aya on his degree thesis entitled 

Preparation and Characterization of Poly(3-hexylthiophene)/Multiwalled 

Carbon Nanotubes Composites for Malathion Chemiresistive Sensor.  

 

The committee recommends that the student be awarded the of Master of Science 

(Chemistry). 

 

Members of the Examination Committee were as follows. 

 

Prof. Emeritus Dato' Dr. Wan Md Zin bin Wan Yunus 

Pusat Pentropikalan  

Universiti Pertahanan Nasional Malaysia 

(Chairman) 

 

Prof. Dr. Ong Keat Khim 

Pusat Asasi Pertahanan 

Universiti Pertahanan Nasional Malaysia 

(Internal Examiner) 

 

Prof. Ts. Dr. Ing. Oskar Hasdinor Hassan 

Institut Sains (IOS)  

Universiti Teknologi MARA (UITM) 

(External Examiner) 

 

 

 



 

 

viii 

APPROVAL 

 

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia 

and has been accepted as fulfilment of the requirements for the degree of Master of 

Science (Chemistry). The members of the Supervisory Committee were as follows. 

 

Prof Madya Ts. Dr. Norhana binti Abdul Halim 

Center for Defence Foundation Studies  

Universiti Pertahanan Nasional Malaysia 

(Main Supervisor) 

 

Dr. Siti Zulaikha binti Ngah Demon 

Center for Defence Foundation Studies  

Universiti Pertahanan Nasional Malaysia 

(Co-Supervisor) 

 

Prof Madya Ts. Dr. Norli binti Abdullah 

Center for Defence Foundation Studies  

Universiti Pertahanan Nasional Malaysia 

(Co-Supervisor) 

 

Dr. Muhammad Zamharir bin Ahmad 

Biotecnology & Nanotecnology Research Centre  

Ibu Pejabat MARDI, Serdang 

(Co-Supervisor) 

 

 

 

 



 

 

ix 

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA 

 

DECLARATION OF THESIS 

Student’s full name  : Nurul Syahirah Nasuha binti Sa’aya 

Date of birth   : 08/10/1995 

Title  : Preparation and Characterization of P3HT/Carbon Nanotubes 

   Composite for Malathion Chemiresistive Sensor 

Academic session  : Jun 2018 
 

I hereby declare that the work in this thesis is my own except for quotations and 

summaries which have been duly acknowledged. 

I further declare that this thesis is classified as: 

           CONFIDENTIAL (Contains confidential information under the official       

Secret Act 1972)* 

           RESTRICTED      (Contains restricted information as specified by the 

organisation where research was done)* 

           OPEN ACCESS     I agree that my thesis to be published as online open access 

(full text) 

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as 

follows. 

1. The thesis is the property of Universiti Pertahanan Nasional Malaysia. 

2. The library of Universiti Pertahanan Nasional Malaysia has the right to 

make copies for the purpose of research only. 

3. The library has the right to make copies of the thesis for academic 

exchange.  

  

         Signature                                  **Signature of Supervisor/Dean of CGS/ 

                                                                                       Chief Librarian 

 

951008-08-5920    Click here to enter text.   

       IC/Passport No.                                    **Name of Supervisor/Dean of CGS/ 

                                                                                       Chief Librarian 

 

Date:                                                              Date: 

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter               

from the organisation with period and reasons for confidentiality and restriction. 

 ** Witness 

 



 

 

x 

TABLE OF CONTENTS 

 

 TITLE    PAGE 

 

ABSTRACT ii 
ABSTRAK iv 
ACKNOWLEDGEMENTS vi 
APPROVAL vii 

APPROVAL viii 
DECLARATION OF THESIS ix 
TABLE OF CONTENTS x 

LIST OF TABLES xiii 
LIST OF FIGURES xiv 
LIST OF ABBREVIATIONS xvii 

CHAPTER 1 INTRODUCTION   1 

1.1 Background 1 
1.2 Problem Statement 7 

1.3 Objective 8 
1.4 Research Scope 9 

1.5 Research Hypothesis 9 
1.6 Significance of Research 10 
1.7 Thesis Outline 10 

CHAPTER 2 LITERATURE REVIEW 12 
Introduction 12 

2.1 Carbon Nanotubes (CNT) 13 
2.2 Single-Walled Carbon Nanotubes (SWCNT) 14 
2.3 Electronic Properties of SWCNT 15 
2.4 Multi-Walled Carbon Nanotube (MWCNT) 16 

2.5 Electronic Properties of MWCNT 17 
2.6 Conducting Polymer (CP) 18 

2.7 Covalent and Non- covalent Functionalization of 

CNT 20 
2.8 Polymer Wrapping for Selective Sorting of CNT 23 
2.9 Polymer-wrapped CNT for Device Applications 26 

2.9.1 Basic Operation CNTs 27 

2.9.2 Polymer-wrapped CNT for Transistor 

Application 28 
2.9.3 Polymer-wrapped CNT for Solar Cell 

Application 31 
2.9.4 Polymer-wrapped CNT for Sensor 

Application 33 
2.9.5 Summary 38 



 

 

xi 

CHAPTER 3 RESEARCH METHODOLOGY 39 
Introduction 39 
3.1 Sample Preparation 41 

3.1.1 Materials 41 
3.1.2 Solution Processing of P3HT/f-MWCNT 

Nanocomposite 44 
3.2 Characterization 52 

3.2.1 Optical Characterization Instruments: UV-

Vis and Photoluminescence (PL) 

Spectroscopy 52 
3.2.2 Characterization of Molecular Vibration: 

Raman and Fourier Transform Infrared 

(FTIR) Spectroscopy 53 
3.2.3 Morphological Characterization: FE-SEM 

and HR-TEM Microscopy 53 

3.3 I-V Measurement 54 
3.3.1 Amperometry Technique 54 

CHAPTER 4 RESULT AND DISCUSSION 56 
Introduction 56 

4.1 Dispersed States of P3HT/f-MWCNT 

nanocomposites 57 

4.2 IR Spectrum of P3HT, f-MWCNT and P3HT/f-

MWCNT analysis 58 
4.3 Raman Spectroscopy 67 
4.4 UV-Vis NIR Spectroscopy 75 
4.5 Photoluminescence Spectroscopy 84 

4.6 Field emission scanning electron microscopy 

(FESEM) 87 

4.7 High Resolution Transmittance Electron 

Microscopy (HR-TEM) 94 
4.8 Summary 100 

CHAPTER 5 ELECTRICAL MEASUREMENT 103 

Introduction 103 

5.1 Current-Voltage (I-V) Characteristics of P3HT 

and P3HT/f-MWCNT Nanocomposites 104 

5.2 Malathion Adsorption of P3HT, f-MWCNT and 

P3HT/f-MWCNT Nanocomposites 112 
5.2.1 Limits of Detection and Quantification 117 
5.2.2 Malathion, Deionized Water and Methanol 

Adsorption of P3HT/f-MWCNT-OH 

Nanocomposite 118 
5.3 Summary 121 

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 123 

Introduction 123 
6.1 Research Work and Findings 123 



 

 

xii 

6.2 Future Works 125 
REFERENCES 126 
BIODATA OF STUDENT 138 

LIST OF PUBLICATION 139 
 



 

 

xiii 

LIST OF TABLES 

 

TABLE NO. TITLE PAGE 

Table 2.1 Previous researches on different type of PThs groups in 

detection sensor 

37 

Table 3.1 Type of used throughout the research 42 

Table 3.2 Materials needed throughout the research 43 

Table 3.3 Labels of P3HT/f-MWCNT nanocomposites samples 45 

Table 4.1 Characteristic Bands for P3HT 59 

Table 4.2 Characteristic Bands for f-MWCNT 61 

Table 4.3 Characteristic Bands for P3HT/f-MWCNT 

nanocomposites 

64 

Table 4.4 ID/IG of f-MWCNT and P3HT/f-MWCNT 

nanocomposites 

74 

Table 4.5 Analysis of contribution from UV–Vis NIR spectra 

peaks and shoulders central wavelengths extracted from 

absorbance curves 

81 

Table 5.1 Imax value before and after solution processing at 1.0 V 108 

Table 5.2 LOD and LOQ for malathion towards P3HT/MWCNT-

OH 

117 

 

 

  



 

 

xiv 

LIST OF FIGURES  

FIGURE NO. TITLE   PAGE 

Figure 2.1 Type of graphene 15 

Figure 2.2 Band diagrams of materials 18 

Figure 2.3 Main CNT functionalization methods 21 

Figure 2.4 Non covalent functionalization of CNT with small 

molecules SWCNTs non-covalently functionalized with 

pyrenylcyclodextrins, which in a chemitransistor can 

detect closely related analogues of adamantane and 

sodium cholate. 

23 

Figure 2.5 Schematic illustrations for the dynamic (upper) and 

static (lower) dispersion of CNT 

25 

Figure 2.6 Schematic procedure of the filtration process 26 

Figure 3.1 Flow chart of research activities 40 

Figure 3.2 Side view of rr-P3HT (a) Top view of rr-P3HT (b) Side 

view of rr-P3HT 

41 

Figure 3.3 Schematic procedure for the preparation of P3HT/f-

MWCNT nanocomposite films 

46 

Figure 3.4 Sample after direct mixing (a) P3HT/MWCNT (b) 

P3HT/MWCNT-OH (c) P3HT/MWCNT-COOH (d) 

P3HT/MWCNT-F and (e) P3HT/MWCNT-NH2 

47 

Figure 3.5 Spin coating process and its film 48 

Figure 3.6 Sample after spin coating (a) P3HT/MWCNT (b) 

P3HT/MWCNT-OH (c) P3HT/MWCNT-COOH (d) 

P3HT/MWCNT-F and (e) P3HT/MWCNT-NH2 

48 

Figure 3.7 Screen printed electrode 49 

 

Figure 3.8 Sample after drop casting (a) P3HT/MWCNT (b) 

P3HT/MWCNT-OH (c) P3HT/MWCNT-COOH (d) 

P3HT/MWCNT-F and (e) P3HT/MWCNT-NH2 

50 

Figure 3.9 (a) Filtration of sample using Whatman 46 filter paper 

(b) Sample after manual filtration 

51 

Figure 3.10 Filtration of sample using Büchner funnel filtration (a) 

set-up filtration (b) sample after filtration 

52 

Figure 3.11 Schematic diagram of the electrochemical analysis setup  55 



 

 

xv 

Figure 4.1 Dispersion in solution nanocomposites of functionalized 

MWCNT (a)MWCNT-OH (b)MWCNT-COOH (c) 

MWCNT-F (d) MWCNT -NH2: 0 days and 10 days later. 

58 

Figure 4.2 FTIR spectra of P3HT 60 

Figure 4.3 FTIR spectra of MWCNT and functionalized MWCNT, 

(-OH, -COOH, -F and NH2) at various frequencies 

62 

Figure 4.4 FTIR spectra of P3HT and P3HT/MWCNT 65  

Figure 4.5 FTIR spectra of P3HT, P3HT/MWCNT-OH, 

P3HT/MWCNT-COOH, P3HT/MWCNT-F and 

P3HT/MWCNT-NH2 

66 

Figure 4.6 Raman spectra of P3HT 68 

Figure 4.7 Raman spectra pristine MWCNT 70 

Figure 4.8 Raman spectra pristine functionalized MWCNT 70 

Figure 4.9 Raman spectra of P3HT/MWCNT nanocomposite 73 

Figure 4.10 Raman spectra of P3HT/f-MWCNT nanocomposite 74 

Figure 4.11 Absorption spectra of P3HT 77 

Figure 4.12 Absorption spectra f-MWCNT by P3HT derivative 79 

Figure 4.13 UV–Vis spectra of (a) pristine P3HT and blended 

P3HT/MWCNT in THF with weight ratios of (b) 1:1, (c) 

1:2, (d) 1:5, and (e) 1:10. 

83 

Figure 4.14 Optical band gaps of commercial P3HT and 

P3HT/MWCNT-OH blended solutions with different 

weight ratios: (a)P3HT pristine, (b) 1:1, (c) 1:2, (d) 1:5, 

and (e) 1:10 blends 

83 

Figure 4.15 Photoluminescence spectroscopy 84 

Figure 4.16 PL spectra of P3HT and P3HT/f-MWCNT 

nanocomposites 

86 

Figure 4.17 Morphology of P3HT with magnification 30,000 89 

Figure 4.18 Morphology of P3HT/f-MWCNT before and after 

solution processing (a) P3HT/MWCNT (b) P3HT/ 

MWCNT-OH and (c) P3HT/MWCNT-COOH with 

magnification 50,000 

90 

Figure 4.19 Morphology of P3HT/f-MWCNT before and after 

solution processing (d) P3HT MWCNT-F and (e) 

P3HT/MWCNT-NH2 with magnification 50,000 

91 

Figure 4.20 Size distribution before and after solution processing (a) 

P3HT (b) P3HT/MWCNT (c) P3HT/MWCNT-OH (d) 

P3HT/MWCNT-COOH (e) P3HT/MWCNT-F and (f) 

P3HT/MWCNT-NH2 

93 

Figure 4.21 HR-TEM images of pristine P3HT film with higher 

magnification (a) 250,000 and (b) 500,000 

95 



 

 

xvi 

Figure 4.22 HR-TEM images of pristine MWCNT-OH film with 

higher magnification (a) 250,000 and (b) 500,000 

96 

Figure 4.23 HR-TEM morphology of P3HT/MWCNT-OH after 

solution processing (a) 50,000 and (b) 100,000 

99 

Figure 5.1 I-V Characteristics (a) P3HT (b) P3HT, MWCNT-OH 

and P3HT/MWCNT-OH 

109 

Figure 5.2 I-V Characteristics (a) P3HT, MWCNT-COOH and 

P3HT/MWCNT-COOH (b) P3HT, MWCNT-NH2, 

P3HT/MWCNT-NH2 

110 

Figure 5.3 I-V Characteristics (a) P3HT, MWCNT and 

P3HT/MWCNT (b) P3HT, MWCNT-F and 

P3HT/MWCNT-F 

111 

Figure 5.4 Chemical structure of (a) malathion (C10H19O6PS2) and 

(b) chemical warfare VX (C11H26NO2PS). 

112 

Figure 5.5 Proposed mechanism between P3HT and MWCNT-OH 

before exposure of malathion. 

113 

Figure 5.6 Proposed mechanism of P3HT/MWCNT-OH 

nanocomposite after exposure towards malathion. 

113 

Figure 5.7 I-V Characteristic (a) P3HT/MWCNT-OH (b) 

P3HT/MWCNT-OH (malathion) 

115 

Figure 5.8 Linearity regression of malathion in exposures towards 

P3HT/MWCNT-OH 

116 

Figure 5.9 Multi-cycle testing of the sensor of P3HT/MWCNT-OH 

with 0.1 ppb malathion (black) and deionized water (red) 

119 

Figure 5.10 Multi-cycle testing of the sensor of P3HT/MWCNT-OH 

with 0.1 ppb methanol 

121 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xvii 

LIST OF ABBREVIATIONS 

f-MWCNT - Functionalized multi walled carbon nanotube 

QCM - Quartz crystal microbalance 

SAW - Surface acoustic wave sensors 

CNT - Carbon nanotubes 

SWCNT - Single-walled carbon nanotubes  

MWCNT - Multi-walled carbon nanotubes 

H2S - Hydrogen sulphide  

PMMA - Polymethylmethacrylate  

SnO2 - Tin oxide  

P3HT - Poly (3-hexylthiophene) 

P3HT/f-MWCNT - Poly (3-hexylthiophene): Functionalized multi walled 

carbon nanotube 

CWA - Chemical warfare agents  

(MS) - Mass Spectroscopy  

O2 - Oxygen 

NO2 - Nitrogen dioxide 

NO3 - Ammonia 

AFM - Atomic force microscopy  

TEM - Transmission electron microscopy 

PS - Polystyrene 

FETs - Field-effect transistors  

CVD - Chemical vapor deposition 

CP - Conducting polymer 

rr-P3DDT - Regioregular poly(3-dodecylthiophene) 

PFO - Poly(9,9-dioctylfluorene) 

DSSCs - Dye sensitized solar cells  

OPV - Organophotovoltaic 



 

 

xviii 

PEDOT: PSS - Poly(3,4-ethylenedioxythiophene): 

poly(styrenesulfonate) 

PCBM - Phenyl-C61-butyric acid methyl ester 

Si - Silicon 

TNT - Trinitrotoluene  

PPy - Polypyrole 

PANI - Polyaniline 

HFIP-PT - Hexafluoroisopropanol functionalized thiophene  

DMMP - Dimethyl methylphosphonate  

PMet - Poly(3-Methylthiophene) 

UV-Vis - Ultraviolet Visible 

PL - Photoluminescence 

FTIR - Fourier Transform Infrared 

FESEM - Field Emission Scanning Electron Microscopy 

HR-TEM - High resolution transmission electron microscopy 

THF - Tetrahydrofuran  

D.C. - Direct current 

  



 

 

1 

 

 

CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 Background 

 

A chemical sensor is a device that responds to the presence of a chemical 

compound and cause in the physical property of sensing material such as colour, 

temperature, and electrical resistance (Janata, 2008). The change in physical quantity 

becomes an indicator signal that can be qualitatively or quantitatively observed and, 

measured with appropriate device. Gas sensor is a type of chemical sensor capable of 

converting a volatile gas to chemical properties and measured electric signals (Wang, 

2016).  

Chemical gas sensor is a device that detects chemical change in the conduct of 

a chemical vapor or gas interaction.  All chemical gas sensors detect concentration of 

gas through electrical or optical signals that later on will be classified and calculated. 

The human nose is a fine sensor, which quickly senses and identifies several gases. 

However, for other gas species that are either odourless or available at low 

concentration, a more advanced gas sensing is required (Wang, 2016) . There are 

further classes of chemical gas sensors depending on its working principle. They can 

be typically, electrochemical, infrared and optical type sensors. Each type of sensors 
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has its own advantages and disadvantages. Solid state sensor is suitable for domestic 

and industrial because it can operate at high temperature. Infrared detectors, field effect 

transistor, quartz crystal microbalance (QCM) sensor, micro cantilever sensor, 

chemicapacitor, surface acoustic wave sensors (SAW) and chemiresistive sensor have 

been explored for chemical warfare agents (James et al., 2018).  

There is demand of responsive, rapid responses and stable chemical sensors for 

manufacturing, environmental surveillance, and biomedicine. Nanotechnology 

progress has created tremendous potential for the construction of highly sensitive, low 

cost, portable sensors with low power consumptions. Nanomaterials can be classified 

into three groups according to their composition (Parveen et al., 2013). Organic 

nanomaterials are composed of carbon-based nanomaterials such as fullerenes, carbon 

nanotubes (CNT), single-walled carbon nanotubes (SWCNT), multi-walled carbon 

nanotubes (MWCNT), graphite, and nanofibers. Inorganics nanomaterials consist of 

metal, oxide-based nanomaterials such as Al, Al2O3, Zn, ZnO, Fe, and Fe2O3 (Mirzaei 

et al., 2019; Tebaldi et al., 2016). The third group is called hybrid nanomaterials and 

is a combination of organic-organic nanomaterials, organic-inorganic nanomaterials, 

and inorganic-inorganic nanomaterials that have a high surface to volume ratio and 

unique structure suitable for the adsorption of gas molecules (Wang et al., 2008). The 

use of hybrid nanomaterials of these two classes of material may result in improved 

chemiresistive sensors that are more efficient at room temperature (Kaushik et al., 

2015). 

In particular, improvement in gas sensors by exploiting their special structure, 

morphology and material properties of organic semiconductor have been sustained in 

the evolution of carbon nanotubes. Since 1991, Iijima has been explored the CNT, 
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fundamentally, about the structure of the CNT itself. As we know, due to the 

entanglement of tens and hundreds of individual tubes that are connected to each other 

as a result of van der Waals attraction forces, CNT forms aggregated pores (Y. Chen 

et al., 2006; Philip et al., 2003; Sharma et al., 2012). These aggregated pores have 

mesopore or higher dimensions (Puglisi et al., 2019) and are capable of providing large 

external surface areas that are capable of immobilizing large biological and chemical 

pollutants. Adsorption in CNT can occur in four regions of the CNT, in the hollow 

interiors of the nanotubes which are open, in the interstitial pore spaces between the 

tube bundles, in the groves which are present at the boundary of the nanotube bundles 

or on the external surface of the outermost CNT (Weis et al., 2016; Wujcik & Monty, 

2013; Zhu et al., 2016). It is difficult to use the inside space of the CNT for adsorption 

because, firstly the individual CNT have closed caps. Secondly, even though the tubes 

have open ends, the smaller diameter of the tubes does not contain a normal 

macromolecular contaminant. Interstitial spacing formed between nanotube bundles is 

a great option for adsorption of a few small molecular weight adsorbates, for example 

metal ions (Im et al., 2016).  

Functionalization of CNT is considered to be one of the distinct properties of 

CNT. CNT do allow surface modification of their sidewalls or ends via covalent or 

non-covalent attachment of functional groups. The non-covalent functionalization 

approach is favoured over the covalent approach because it does not affect the porous 

textural properties of CNT (Liu et al., 2015). This is because the π graphene sheet 

system is undisturbed, meaning that it will not impact the exterior surface area of the 

tubes. CNT functionalization primary objective is to improve its water solubility so 

that it can be used for many practical applications. Hydrophilic CNT have improved 

dispersity and are able to have stronger surface contact than hydrophobic CNT with 
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biological adsorbates (Liu et al., 2016). In addition, the dispersity of CNT is significant 

because it is possible to leverage the advantage of water-soluble CNT in the 

manufacture of CNTs composite membranes. Semi dispersible and partly hydrophobic 

CNT, on the other hand, have higher affinity or weakly dispersed CNT. 

CNT-based gas sensors and mechanisms have also recently been thoroughly 

investigated. Many studies on CNT-based sensors for gases and vapours have been 

documented since the pioneering work by Wei and co-workers (Wei et al., 2014). The 

focus studies have ranged from the various detectable gases, the uses of different types 

of CNT (single walled, multi walled, semiconducting, or metallic), functionalization 

methods, transduction mechanisms, and different measurable quantities. Gas sensing 

has been thoughtfully covered by (Kauffman & Star, 2008), previous articles had 

thoughtfully addressed gas sensing in 2008 and focus on important analytes and how 

their interactions with the CNT systems can be used in sensing applications. Among 

target analytes were ammonia (NH3), nitrogen dioxide (NO2), hydrogen (H2), methane 

(CH4), carbon monoxide (CO), hydrogen sulphide (H2S), sulphur dioxide (SO2), 

benzene, toluene, and xylene (BTX) (Schroeder et al., 2019) .  

In general, composite CNT demonstrate better electrical sensitivity than 

pristine CNT. Combining CNTs with other materials in a composite chemical sensor 

can be useful not only to improve the CNT’s electrically sensitivity, but to improve 

intrinsic as well. Generally, there are several basic criteria for good and efficient gas 

sensing systems such as high sensitivity and selectivity, fast response time and 

recovery time, low analyst consumption, low operating temperature and temperature 

independence, stability in performances. Commonly used gas sensing materials 

include vapour sensitive polymers, semiconductor metal oxides and others. Since the 
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most common gas sensing principle is the adsorption and desorption of gas molecules 

on sensing materials, it is quite understandable that by increasing the contact interfaces 

between the analytes and sensing materials, the sensitivity can be significantly 

enhanced. 

Conducting polymers (CP) as well as conducting polymer nanoparticles seem 

to be very applicable for the development of various analyte-recognizing elements of 

sensors and chemical sensors. Mainly fabrication methods as well as application of 

conducting polymers in sensors (Ali et al., 2014). CP have been applied in the design 

of catalytic and affinity chemical sensors as immobilization matrixes, signal 

transduction systems, and even analyte-recognizing components. Various types of 

conducting and electrochemically generated polymer-based electrochemical sensors 

were developed including amperometric catalytic and potentiodynamic affinity 

sensors (Hatchett & Josowicz, 2008). A very specific interaction of analyte with 

conducting polymer element results in the changes either in electrical properties such 

as resistance and conductivity (Yoon & Jang, 2009).  

Chemiresistive-based sensor using conducting polymer demonstrates high 

sensitivity and selectivity towards the organic compound (Pandey, 2016). However, 

P3HT polymer is considered as unstable hydrocarbons where it can be easily 

interchanged and oxidized in natural environment (Cichosz et al., 2018).. As a result, 

it reduced the ability to conduct electric charge that hinder their application in 

chemiresistive sensors (Majhi et al., 2021).  It thus explains only a few studies have 

been reported on the chemiresistive sensor using CP for malathion detection. 

Functionalized multiwalled carbon nanotubes (f-MWCNT) has been known as good 

chemiresistive sensing materials owing to their electronic and electrical properties that 


