ENHANCEMENT IN TRIBOLOGICAL PERFORMANCES OF ADVANCED MICROWAVES SYNTHESISED MoS₂ NANOPARTICLES AS NANO ADDITIVES IN MILITARY DIESEL-BASED ENGINE OIL

THACHNATHAREN A/L NAGARAJAN

MASTER OF SCIENCE

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2021

TITLE

THACHNATHAREN A/L NAGARAJAN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science

ABSTRACT

The automobile industry has a strong emphasis on environmentally friendly, high-quality, long-lasting, and energy-efficient features. features of energy efficiency. Friction and wear are the primary causes of energy loss and mechanical failure. The application of lubricant additives is one of the most effective ways to reduce friction and wear under boundary lubrication. The use of nanoparticles/nanomaterials as lubricant additives in lubricants such as engine oil is referred to as nanolubricants. However, nanoparticles addition in military diesel-based engine oil remains largely unexplored. In this dissertation, optimised Molybdenum disulfide (MoS₂) nanoparticle was synthesised via advanced microwave synthesis method using Response Surface Methodology. The physicochemical parameters of the optimised MoS₂ nanoparticles have been thoroughly studied. The nanoparticle was dispersed in SAE 20W50 military-grade diesel engine oil to formulate the nanolubricant. The tribological, oxidation and thermal conductivity properties of the nanolubricant have been investigated using a wide range of analytical methods. FESEM images confirmed the nanosheet morphology of the MoS₂ with sizes approximately 150nm-300nm and the high-resolution EDS elemental mapping has shown the uniform and homogeneous distribution of molybdenum and sulfur. The broad XRD diffraction peaks of MoS₂ implied that the crystalline size is very small and confirmed that the crystal structure is pure MoS₂. The FT-IR spectra reveals the required functional groups, which further confirms the formation of MoS₂. The visual observation confirms that clearly indicates there was no sign of sedimentation after 21 days in the nanolubricants. The zeta potential value of the MoS₂ nanolubricant with 0.05wt. %, 0.01wt. % and 0.005wt. % is to be extremely stable. The nanolubricant with 0.01 wt.% concentration of MoS₂ nanoparticle showed the reduction of Coefficient of Friction (COF) and Average Wear Scar Diameter (WSD) with 19.24 % and 19.52 % decrement compare to the base oil due to the formation of tribofilm and the mending effect. The nanolubricant with 0.05 wt.% concentration of MoS₂ nanoparticle shown the enhancement of 65.68 % in Oxidation Induction Time (OIT) compare to the base oil. The synergistic effect of MoS₂ nanoparticles and Zinc dialkyldithiophosphates (ZDDP) can exhibit good oxidation stability, which enhanced the antioxidant properties. The addition of MoS₂ within the base oil demonstrates an improvement in thermal conductivity with ~10 % enhancement compared to the base oil. This due to the percolation mechanism, which may increase the thermal conductivity. This study has essentially provided a thorough understanding of a revolutionary advanced microwave synthesised MoS₂ based nanolubricant. This research's integrated approach to understanding tribological, oxidation, and thermal conductivity mechanisms is expected to lead to novel strategies for building superior nanolubricants for military vehicles in the future.

ABSTRAK

Industri automobil mempunyai keutamaan pada ciri mesra alam, berkualiti tinggi, tahan lama, dan penggunaan tenaga dengan cekap. Geseran dan kehausan adalah penyebab utama kehilangan tenaga dan kegagalan mekanikal. Penggunaan bahan tambahan pelincir adalah salah satu kaedah paling berkesan untuk mengurangkan geseran. Penggunaan nanopartikel / nanomaterial sebagai bahan tambahan pelincir dalam pelincir seperti minyak enjin disebut sebagai bahan pelincir nano. Walau bagaimanapun, penambahan nanopartikel dalam minyak enjin gred tentera berasaskan diesel masih belum diterokai luas. Dalam disertasi ini, nanopartikel Molybdenum disulfide (MoS₂) yang dioptimumkan telah disintesis melalui kaedah Sintesis Gelombang Mikro Moden menggunakan Metodologi Permukaan Respons. Parameter fizikokimia nanopartikel MoS₂ yang dioptimumkan telah dikaji secara menyeluruh. Nanopartikel tersebut diserakkan dalam minyak enjin gred tentera berasaskan diesel SAE 20W50 untuk memformulasikan bahan pelincir nano.Sifat tribologi, pengoksidaan dan kekonduksian terma bahan pelincir nano telah diselidiki menggunakan pelbagai kaedah analisis. Imej FESEM mengesahkan morfologi nanosheet MoS₂ dengan ukuran kira-kira 150nm-300nm dan pemetaan elemen EDS beresolusi tinggi telah menunjukkan taburan molibdenum dan sulfur yang seragam dan homogen. Puncak difraksi XRD luas MoS2 menyiratkan bahawa ukuran kristal sangat kecil dan mengesahkan bahawa struktur kristal adalah MoS₂ tulen. Spektrum FT-IR mengungkapkan kumpulan fungsional yang diperlukan, yang selanjutnya mengesahkan pembentukan MoS₂. Pemerhatian visual jelas menunjukkan tiada tanda pemendapan setelah 21 hari di bahan pelincir nano. Nilai potensi zeta bahan pelincir nano MoS₂ dengan berkepekatan 0.05wt. %, 0.01wt. % dan 0.005wt. % menunjukkan

kestabilan yang tinggi. Bahan pelincir nano dengan berkepekatan 0.01wt. % menunjukkan pengurangan Pekali Geseran (COF) dan Purata Diameter Kehausan (WSD) dengan penurunan 19.24% dan 19.52% dibandingkan dengan minyak asas kerana pembentukan tribofilm dan kesan penyembuhan. Bahan pelincir nano dengan kepekatan 0.05 wt.% nanopartikel MoS₂ menunjukkan peningkatan 65.68% dalam Masa Induksi Pengoksidaan (OIT) berbanding dengan minyak asas. Kesan sinergistik nanopartikel MoS₂ dan Zink dialkyldithiophosphates (ZDDP) dapat menunjukkan kestabilan pengoksidaan yang baik, yang meningkatkan sifat antioksidan. Penambahan MoS₂ dalam minyak asas menunjukkan peningkatan kekonduksian terma dengan peningkatan ~ 10% berbanding dengan minyak asas. Ini disebabkan oleh mekanisme perkolasi, yang dapat meningkatkan kekonduksian terma. Kajian ini pada asasnya memberikan pemahaman menyeluruh tentang bahan pelincir nano MoS₂ berasaskan Sintesis Gelombang Mikro Moden. Pendekatan bersepadu penyelidikan ini adalah untuk memahami mekanisme kekonduksian, pengoksidaan, dan kekonduksian termal dengan penghasilan bahan pelincir nano yang unggul untuk kenderaan tentera di masa hadapan.

ACKNOWLEDGEMENTS

God is to be praised and thanked for everything. May God's peace and blessings lead me in the right direction. I pray that God blesses all of the people who assisted me in my research.

First and foremost, I want to express my gratitude to my loving parents, Mr.Nagarajan Palanysamy and Mrs. Pathmavathy Krishnan, and my siblings Mahentaran and Sarveantharan for their unwavering love, encouragement, support, and prayers, without which I would not have been able to achieve this milestone.

I am very much grateful to Assoc. Prof. Dr. Nanthini Sridewi who had been an outstanding supervisor, mentor, and friend to me. She offered me the flexibility to make decisions and put ideas into action, as well as consistently supporting and promoting excellent work throughout my MSc.

I would like to thank Prof. Dr. Mohammad Khalid in particular for his insightful comments and fascinating discussions. His help has been precious during my MSc research. I want to express my gratitude to Dr. Syed Shahabuddin and Assoc. Prof. Dr. Norli Binti Abdullah for their assistance. I want to thank all of the research fellows, especially Dr. Arulraj Arunachalam, Dr. Priyanka Jagadish, Dr. Syed Tawab Shah, Dr. Syam Krishnan and Dr. Mahesh Vaka, for their help and advice on this project. I would like to thank all of the researchers, particularly Dr. Salsabil Aldaas, for her help with the four-ball tribotester. Finally, I would like to express my gratitude to the UPNM and Sunway University for providing me with such a wonderful MSc experience.

I want to express my heartfelt gratitude to my lovely fiancée, Dr. Sri Savitha Rupeni, for her everlasting love and support throughout my education and life. In addition, I am very fortunate to have Mr.Kandasamy Velayuthan and Mrs.Nagammah Nadesan as my future parents-in-law as they provide me with support and prayers throughout my life.

APPROVAL

The Examination Committee has met on 2 September 2021 to conduct the final examination of Thachnatharen A/L Nagarajan on his degree thesis entitled Enhancement in Tribological Performances of Advanced Microwaves Synthesised MoS₂ Nanoparticles as Nano Additives in Military Diesel-Based Engine Oil.

The committee recommends that the student be awarded the of Master of Science

Members of the Examination Committee were as follows.

ASSOC. PROF. DR. NOOR. AZILAH BINTI MOHD KASIM

Research Centre for Chemical Defence Universiti Pertahanan Nasional Malaysia (Chairman)

ASSOC. PROF. DR. KU ZARINA BINTI KU AHMAD

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

ASSOC. PROF. DR. MUHAMMAD AFZAL

Faculty of Science and Technology Shaheed Benazir Bhutto University, Pakistan (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science**. The members of the Supervisory Committee were as follows.

ASSOC. PROF. DR. NANTHINI SRIDEWI A/P APPAN

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

PROF. DR. MOHAMMAD KHALID

Graphene & Advanced 2D Materials Research Group Sunway University, Malaysia (Co-Supervisor)

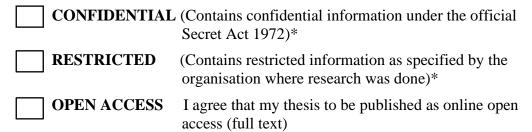
DR. SYED SHAHABUDDIN

School of Technology, Chemistry Pandit Deendayal Petroleum University, India (Co-Supervisor)

ASSOC. PROF. DR. NORLI BINTI ABDULLAH

Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA


DECLARATION OF THESIS

Student's full name	: Thachnatharen A/L Nagarajan
Date of birth	: 27/04/1995
Title	: Enhancement in Tribological Performances of Advanced Microwaves Synthesised MoS ₂ Nanoparticles as Nano Additives in Military Diesel-Based Engine Oil

Academic session : 2019/2020

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make

copies for the purpose of research only.

3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

IC/Passport No.

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

Page

ABSTRA	СТ	ii
ABSTRA	K	iv
ACKNO	WLEDGEMENTS	vi
APPROV	AL	viii
APPROV	AL	ix
DECLAR	RATION	X
TABLE (OF CONTENTS	xi
LIST OF	TABLES	XV
LIST OF	FIGURES	xvi
LIST OF	ABBREVIATION	xviii
СНАРТЕ	R 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	
1.3	1.3 Objectives	
1.4	Research Scope	5
1.5	Significance of Research	5
1.6	Thesis Outline	6
CHAPTE	R 2 LITERATURE REVIEW	7
2.1	Introduction	
2.2	Tribology	
2.3	Types of Lubricants	10
	2.3.1 Mineral oil	11
	2.3.2 Bio-lubricant	12
	2.3.3 Synthetic oil	12
	2.3.4 Gasoline-based engine oil VS Diesel-based engine oil	13

	~ .			
	2.4			14
	2.5	Nanolubricant 1		16
	2.6	Lubrication mechanism of nanoparticles		17
		2.6.1	Rolling Effect	18
		2.6.2	Protective Film Formation	19
		2.6.3	Mending Effect	20
		2.6.4	Polishing Effect	21
	2.7	Types of	Nanoparticles as Lubricant Additives	22
		2.7.1	Metal 23	
		2.7.2	Metal Oxide	23
		2.7.3	Carbon-Based	24
		2.7.4	Rare Earth Compounds	25
	2.8 The synthesis method of MoS_2		hesis method of MoS ₂	25
		2.8.1	Metal Sulphides	28
	2.9	Molybdenum disulfide (MoS ₂) 28		28
	2.10	The Tribological analysis of MoS ₂ 30		30
	2.11	Parameters of MoS ₂ nanoparticles Affect the Tribological Properties 32		32
		2.11.1	Concentration of Nanoparticles	33
		2.11.2	Size of Nanoparticles	33
		2.11.3	Morphology of Nanoparticles	35
	2.12	The Oxidation Induction Time (OIT) Analysis of MoS235		35
	2.13	The Thermal Conductivity Analysis of MoS ₂ 37		37
	2.14	Optimisa	tion using Response Surface Methodology (RSM)	40
Cl	HAPTER 3	3 METHO	DDOLOGY/MATERIALS AND METHODS	44
	3.1	Introduct	ion	44
	3.2	Materials	8	45
	3.3	Synthesis	s of MoS ₂ nanoparticles	46
		3.3.1	Preparation of MoS_2 nanoparticles using advanced microwave	
			synthesis	47

	3.3.2	Experimental Design and Statistical Analysis	49
3.4	MoS ₂ based nanolubricant formulation		53
3.5	3.5 Physio-chemical characterisation of optimised MoS ₂ nanoparticle nanolubricant		55
	3.5.1	Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX)	55
	3.5.2	X-ray Diffractometer (XRD)	56
	3.5.3	Fourier-Transform Infrared Spectroscopy (FTIR)	56
	3.5.4	Zeta potential	56
	3.5.5	Visual observation of nanolubricant	57
3.6 Anal		is of optimised MoS ₂ nanolubricant properties	57
	3.6.1	Evaluation of tribological properties of optimised MoS_2 nanolubricant	57
	3.6.2	Evaluation of the Oxidation Induction Time (OIT) properties of optimised MoS_2 nanolubricant	60
	3.6.3	Evaluation of the thermal conductivity properties of optimised MoS_2 nanolubricant.	62
3.7	Summa	ry	65
СНАРТЕР	R 4 RESUI	LTS AND DISCUSSION	66
4.1	Introdu	ction	66
4.2	Design	of experiments and analysis of variance (ANOVA)	66
	4.2.1	Effect of Microwave Synthesis Temperature and Time on COF	67
	4.2.2	Effect of Microwave Synthesis Temperature and Time on Average Wear Scar Diameter	76
4.3	-	Optimisation of time and temperature for MoS ₂ microwave synthesis for tribological application 8.	
4.4	Charact	terisation of optimised MoS ₂	88
	4.4.1	Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS) of optimised MoS ₂ nanoparticle.	88

	4.4.2	X-ray Diffraction (XRD) of optimised MoS_2 nanoparticle	90
	4.4.3	Fourier-Transform Infrared Spectroscopy (FTIR) of optimised	
		MoS ₂ nanoparticle.	91
	4.4.4	Visual Observation and Zeta Potential of MoS_2 nanolubricant	92
4.5	Tribolog	ical Analysis of optimised MoS nanolubricant	94
4.6	Oxidation Analysis of optimised MoS ₂ nanolubricant 10		100
4.7	Thermal conductivity Analysis 102		102
4.8	Summary	y	103
CHAPTER	5 SUMMA	ARY, CONCLUSION AND RECOMMENDATIONS	105
5.1	Introduct	tion	105
5.2	Conclusi	on	106
5.3	Limitatio	on	108
5.4	Recomm	endation for future studies	108
REFEREN	CE / BIBI	LIOGRAPHY	110
BIODATA	OF STUI	DENT	119
LIST OF P	UBLICA	ΓΙΟΝS	120

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1 Base oil classification of American Petroleum Institute [22]	11
Table 2.2 The comparison between gasoline-based and diesel-based engine oil [35]	13
Table 2.3 List of additives mixed in lubricating oils	15
Table 2.4 Benefits of microwave synthesis in dedicated microwave reactors[93]	27
Table 3.1: Specification of SAE 20W50 military-grade diesel engine oil	46
Table 3.2 Experimental design of time and temperature combinations of MoS ₂ synthesis	48
Table 3.3 Parameter ranges chosen for experimental study using CCD	51
Table 3.4: Mechanical properties of the steel ball-bearing	59
Table 3.5: Operating Parameters for four-ball tribotester	59
Table 3.6: Operating Parameters for P-DSC	61
Table 3.7 Operating Parameters for LFA	65
Table 4.1 Experimental design and results	67
Table 4.2 ANOVA table for COF of MoS ₂ nanolubricants	69
Table 4.3 Model summary of the quadratic model for COF	70
Table 4.4 ANOVA table for average wear scar diameter of MoS ₂ nanolubricants	79
Table 4.5 Model summary of the quadratic model for average wear scar diameter	80
Table 4.6 Model validation for MoS ₂ nanolubricants	86
Table 4.7 The elemental distribution of MoS ₂ nanoparticles	90
Table 4.8 Zeta potential value of the MoS ₂ nanolubricant with various concentrations	93

LIST OF FIGURES

Figure 2.1 Energy consumption breakdown for passenger cars [1]	9
Figure 2.2 Synthesis of nanolubricant using the two-step method	17
Figure 2.3 The rolling mechanism by nanolubricant [48].	18
Figure 2.4 The protective film formation by nanolubricant [59]	19
Figure 2.5 The mending effect mechanism by nanolubricant [59]	21
Figure 2.6 The polishing effect mechanism by nanolubricant [59]	22
Figure 2.7 The crystalline structure of MoS ₂ [97]	30
Figure 2.8 The diffusion of S-atom from MoS ₂ nanoparticles [105]	31
Figure 2.9 Schematic illustration for lubricating properties of MoS ₂ nanoparticles[103	8] 32
Figure 2.10 The Oxidation Induction Time (OIT) Experimental Curve	36
Figure 3.1 The overall process involved in the experiment	44
Figure 3.2 Milestone flexiWAVE advanced microwave platform system	48
Figure 3.3 Preparation of MoS ₂ nanoparticles via advanced microwave synthesis	52
Figure 3.4 The overall process of nanolubricant formulation	54
Figure 3.5 The experimental setup and the schematic drawing of the tribotester	59
Figure 3.6 : HP-DSC and the schematic drawing of the HP-DSC working principle	61
Figure 3.7 LFA and the schematic drawing of the LFA working principle	64
Figure 4.1 Normal probability plot of COF for MoS ₂ nanolubricants	71
Figure 4.2 A 3D interaction plot of COF for MoS ₂ nanolubricant	72
Figure 4.3 A contour interaction plot of COF for MoS ₂ nanolubricants	72
Figure 4.4 Residuals vs. predicted of COF for MoS ₂ nanolubricants	74
Figure 4.5 Residuals vs. Experimental run of COF for MoS ₂ nanolubricants	74
Figure 4.6 Predicted vs. Actual of COF for MoS ₂ nanolubricants	76
Figure 4.7 Normal probability plot of average WSD for MoS ₂ nanolubricants	80
Figure 4.8 A 3D interaction plot of average WSD for MoS ₂ nanolubricants	81
Figure 4.9 A contour interaction plot of average WSD for MoS ₂ nanolubricants	81
Figure 4.10 Residuals vs. predicted of average WSD for MoS ₂ nanolubricants	83

Figure 4.11 Residual vs Experimental run of average WSD for MoS2nanolubricants	83
Figure 4.12 Residuals vs. Experimental run of average WSD for MoS ₂ nanolubricants	84
Figure 4.13 Ramp function plot for the optimisation of MoS2 nanolubricants	86
Figure 4.14 (a) and (b) FESEM and (c) and (d) EDS mapping of MoS_2 nanoparticle of	2
image (a) 89	
Figure 4.15 The EDS Spectrum of the MoS ₂ nanoparticles	90
Figure 4.16 XRD pattern of MoS ₂ nanoparticles	91
Figure 4.17 FTIR spectroscopy graph of optimised MoS ₂ nanoparticle	92
Figure 4.18 Visual observation of the MoS ₂ nanolubricants	94
Figure 4.19 COF of MoS ₂ nanolubricant	96
Figure 4.20 Average WSD profile on MoS ₂ nanolubricant	98
Figure 4.21 Ball bearing image after tribological experiments using MoS ₂ nanolubricant(A) base oil (B) 0.1wt. % (C) 0.05wt. % (D) 0.01wt. % and (E) 0.005wt. %	
99	
Figure 4.22 Schematic diagram of the formation of scar on ball bearing	99
Figure 4.23 OIT of MoS ₂ nanolubricant with different concentrations	101
Figure 4.24 Thermal conductivity of 0.01wt. % nanolubricant with base oil.	103

LIST OF ABBREVIATION

MoS ₂	Molybdenum Disulphide
COF	Coefficient of Friction
WSD	Average Wear Scar Diameter
ΟΙΤ	Oxidation Induction Time
ZDDP	Zinc Dialkyldithiophosphates
RSM	Response Surface Methodology
SAPS	Sulphated Ash, Phosphorous and Sulphur
API	American Petroleum Institute
PAO	Polyalphaolefin
PAG	Polyalkyleneglycol
MWCNTs	Multi-Walled Carbon Nanotubes
SAE	Society of Automotive Engineers
TMC	Transition Metal Chalcogenide
CCD	Central Composite Design
MoDTC	Molybdenum Dithiocarbamate
UHMWPE	Ultra-High-Molecular-Weight Polyethylene
STRIDE	Science and Technology Research Institute for Defence
ILSAC	International Lubricant Specification Advisory Committee
DOE	Design of Experiments
ANOVA	Analysis of Variance
FESEM	Field Emission Scanning Electron Microscopy
EDX	Energy-Dispersive X-Ray Spectroscopy
XRD	X-ray Diffractometer

FTIR	Fourier-Transform Infrared Spectroscopy
ASTM	American Society for Testing and Materials
HP-DSC	High-Pressure Differential Scanning Calorimeter
LFA	Laser Flash Analysis
DOE	Design of Experiment
JCPDS	Joint Committee on Powder Diffraction Standards
et al.	(et alia): and others

CHAPTER 1

INTRODUCTION

1.1 Background

Friction and wear are the primary causes of energy dissipation and mechanical outage. As a result, reducing friction and wear is crucial for extending the life of mechanical equipment while also conserving energy and lowering emissions[1]. Lubrication is one of the most productive strategies for reducing friction and wear, which is essential for energy saving, environmental protection, and emission decrement[2]. Mineral oil, bio lubricant, and synthetic oil are the most common lubricants. Synthetic oil provides several advantages over mineral oils, including the ability to lubricate at extremely low or high temperatures and better wear resistance. Synthetic oils also have several benefits, including decreased energy usage maintenance costs and increased energy efficiency[3].

There are two types of engine oil in today's cars: gasoline-based engine oil for gasoline-powered vehicles and diesel-based engine oil for diesel-powered vehicles. Due to their prolonged use with heavy ammunitions during the unanticipated conflict, military vehicles are one of the few vehicles that face tremendous heat and pressure. Therefore, it has supplemented with diesel-based engine oil to tackle the problem, as reducing friction in the combustion engine is crucial for efficiency. However, the existing diesel-based engine oils

possess lower tribological, oxidation and thermal performances, which cause damages to engine parts and massive heat energy loss in a short period of usage[4]. The incorporation of nanoparticles in lubricants has opened up to a new class of lubricant, the nanolubricant. Nanolubricants are advantageous over conventional lubricants in the sense that they provide significant enhancement in tribological properties[5, 6]. However, there has been no research that has reported on the tribological characteristics of military diesel-based engine oil used by the Malaysian Armed Forces. Furthermore, the concept of nanolubricant is relatively new in the Malaysian context and globally as well.

The base oil used in this study is military diesel-based engine oil to improve its tribological qualities. First, the MoS₂ nanoparticle-based nanolubricant were synthesised and characterised. This research is the first to attempt the synthesise using an advanced microwave synthesis route for tribological application. This research focuses on optimising the synthesis of MoS₂ nanoparticles using an advanced microwave synthesis method, which saves time, energy and produces better tribological, oxidation and thermal conductivity properties than the traditional hydrothermal method. The physicochemical parameters of the optimised MoS₂ nanoparticles were then determined, and the nanoparticles were dispersed in Military dieselbased engine oil to develop a novel nanolubricant. Following that, the tribological, oxidation, and thermal characteristics were investigated. The primary goal of this study is to create MoS₂ nanoparticles using advanced microwave technology, which have improved tribological, oxidation, and thermal properties when distributed in military diesel engine oil. This study will pave the path for developing new microwave-synthesised MoS₂ nano additives for military diesel engine oil.

1.2 Problem Statement

Engine oil is critical for maintaining the efficiency of vehicle machinery. To avoid friction and damage to the moving contact surfaces, it lubricates the contact points of all gear and wedges in the engine. Due to its extensive use with massive loads amidst unexpected battle, military vehicles are one of the few vehicles that experience tremendous heat and pressure[4]. To improve the engine's performance, it's critical to reduce friction and wear, as well as improve the oxidative and thermal properties of the engine oil. Currently, engine oil used for military vehicles deployed without any nanoparticles. As a result, it possesses lower tribological, oxidation and thermal performances, which cause damages to engine parts and massive heat energy loss in a short period of usage[7].

Furthermore, the lubricant used also tend to oxidise in several months of usage. In that context, it also increases the maintenance costing and vehicles downtime. Besides, the current hydrothermal method of MoS₂ nanoparticles synthesis requires an enormous amount of time and energy[8].

1.3 Objectives

This research aims to achieve a comprehensive understanding of advanced microwave synthesised MoS_2 nanoparticles based nanolubricants. To accomplish this, thermo-physical characterisations are necessary. Furthermore, application studies of tribology, oxidation and thermal conductivity involving the MoS_2 nanoparticles dispersed in military diesel-based engine oil would pave the way for uncovering the interaction of MoS_2 in a combustion engine of a military vehicle. Therefore, the objectives of this study are:

 To synthesise optimised MoS₂ nanoparticles via advanced microwave using Response Surface Methodology (RSM) for tribological application.

To assess the physicochemical properties of the optimised MoS₂ nanoparticles
by using FESEM, EDX, XRD, FTIR and Zeta potential

 To investigate the tribology, oxidation and thermal conductivity performances of the MoS₂ nanolubricant formulation.