EFFECTS OF NON-NEWTONIAN HYBRID NANOFLUID HEAT TRANSFER AND ENTROPY GENERATION OVER A HORIZONTAL SHRINKING SURFACE

NUR AISYAH BINTI AMINUDDIN

MASTER OF SCIENCE (MATHEMATICS)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2024

EFFECTS OF NON-NEWTONIAN HYBRID NANOFLUID HEAT TRANSFER AND ENTROPY GENERATION OVER A HORIZONTAL SHRINKING SURFACE

NUR AISYAH BINTI AMINUDDIN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Master of Science (Mathematics)

ABSTRACT

The heat transport and entropy generation of Magnetohydrodynamic (MHD) non-Newtonian Powell-Eyring hybrid nanofluid near the stagnation point over a horizontal shrinking surface is examined using Tiwari and Das model, with graphene oxide (GO) as the main nanomaterial. Three problems of boundary layer flow are assessed, where GO is combined with iron dioxide (Fe₂O₄) and ethylene glycol $(C_2H_6O_2)$, molybdenum disulfide (MoS₂) and glycerine (C₃H₈O₃), and lastly molybdenum disulfide (MoS₂) and ethylene glycol (C₂H₆O₂). The first, second, and third problems study Joule heating, slips, and radiation effects, respectively. The mathematical modelling for each problem consists of continuity, momentum, and energy equations in partial differential equations (PDEs). Using suitable similarity transformations, the PDEs are then reduced to ordinary differential equations (ODEs). The ODEs are solved numerically by utilizing the bvp4c, a built-in solver in MATLAB software. The numerical results are illustrated in the form of figures and tables, where they display the velocity profile, temperature profile, skin friction, Nusselt number and entropy generation. The numerical results presented are gained by varying the value of several governing variables such as magnetic field, radiation, rapidity slip, thermal slip, heat source, viscous dissipation, Joule heating, Biot number and suction. The findings obtained reveal that the augmentation of GO concentration ameliorates the temperature of the fluid while depleting the rapidity of fluid, rate of heat transport and production of entropy. The amplification of thermal radiation intensifies the temperature of the liquid and plunges the formation of entropy. The solutions for the shrinking surface are found to be non-unique or known as dual solutions. Stability analysis is conducted by introducing disturbance to check the steadiness of both

solutions. The stability analysis showed that the upper branch solution fulfils the characteristics of a stable solution. Hence, the lower branch solution is regarded as an unsteady solution.

ABSTRAK

Pemindahan haba dan penghasilan entropi bagi aliran Magnetohidrodinamik (MHD) dalam nanobendalir hibrid Powell-Eyring yang berdekatan dengan titik genangan dikaji di atas permukaan melintang yang mengecut menggunakan model Tiwari dan Das, dengan grafen oksida (GO) sebagai nanozarah utama. Tiga masalah aliran lapisan sempadan yang berbeza dikaji iaitu, GO digabungkan dengan ferum oksida (Fe_2O_4) dan etilena glikol ($C_2H_6O_2$), molibdenum disulfida (MoS_2) dan gliserin (C₃H₈O₃), dan yang terakhir molibdenum disulfida (MoS₂) dan etilena glikol (C₂H₆O₂). Permasalahan pertama, kedua, dan ketiga mengkaji pemanasan Joule, kesan gelinciran dan radiasi terma. Model matematik bagi semua masalah aliran lapisan sempadan dalam tesis ini mengandungi persamaan keselanjaran, momentum dan tenaga dalam bentuk persamaan pembezaan separa (PDEs). Persamaan pembezaan separa tersebut kemudian digubah menjadi persamaan pembezaan biasa (ODEs) menggunakan penjelmaan keserupaan sepadan. ODEs kemudian diselesaikan secara berangka menggunakan fungsi bvp4c yang terbina dalam perisian MATLAB. Keputusan berangka ditunjukkan dalam bentuk graf dan jadual, yang memaparkan profil halaju, profil suhu, pekali geseran kulit, nombor Nusselt dan penjanaan entropi. Keputusan berangka diperolehi dengan memvariasikan nilai-nilai bagi beberapa pemboleh ubah seperti medan magnet, radiasi, gelincir halaju, gelincir terma, penjanaan haba, pelesapan likat, pemanasan Joule, nombor Biot dan sedutan. Dapatan kajian mendedahkan bahawa penambahan kepekatan GO menaikkan suhu bendalir, dalam masa sama mengurangkan kelajuan cecair, kadar transportasi haba dan penjanaan entropi sistem. Apabila nilai radiasi dinaikkan, suhu bendalir akan bertambah kuat dan penghasilan entropi akan menjunam. Solusi-solusi bagi permukaan yang mengecut didapati menghasilkan solusi yang tidak unik atau dikenali sebagai penyelesaian dual. Analisis kestabilan dijalankan dengan memperkenalkan gangguan untuk menyemak kemantapan kedua-dua penyelesaian. Daripada analisis tersebut, penyelesaian pertama didapati memenuhi karakter yang diperlukan untuk penyelesaian yang stabil. Oleh itu, penyelesaian kedua dianggap sebagai penyelesaian yang tidak stabil.

ACKNOWLEDGEMENTS

In the name of Allah, most gracious and most merciful,

First and foremost, I would like to acknowledge the support, knowledge, advice and encouragement that I received from my main supervisor, Dr Nor Ain Azeany binti Mohd Nasir. Not to forget the support from my co-supervisor Dr Mohd Anuar bin Jamaludin.

Special thanks to National Defence University of Malaysia and Ministry of Higher Education Malaysia for the funds received in supporting this research, especially for publication of papers and attendance to conferences.

A big appreciation for my seniors and friends for all kinds of assistance offered during the process to complete this journey. Not to forget my parents, siblings, and family members. Words cannot express how much I appreciate all the kindness that I received while working on this thesis.

APPROVAL

The Examination Committee has met on **5 January 2024** to conduct the final examination of **Nur Aisyah binti Aminuddin** on her degree thesis entitled 'Effects of Non-Newtonian Hybrid Nanofluid Heat Transfer and Entropy Generation Over a Horizontal Shrinking Surface'.

The committee recommends that the student be awarded the of Master of Science (Mathematics).

Members of the Examination Committee were as follows.

Dr Mazlinda binti Ibrahim

Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Chairman)

Dr Nur Aisyah Abdul Fataf

Cyber Security and Digital Industrial Revolution Centre Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Dr Norhaliza binti Abu Bakar

Centre for Diploma Studies Universiti Tun Hussein Onn Malaysia (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Master of Science (Mathematics)**. The members of the Supervisory Committee were as follows.

Dr Nor Ain Azeany binti Mohd Nasir Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Dr Mohd Anuar bin Jamaludin Centre for Defence Foundation Studies Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Nur Aisyah binti Aminuddin
Date of birth	: 12 th April 1997
Title	: Effects of Non-Newtonian Hybrid Nanofluid Heat Transfer and Entropy Generation Over a Horizontal Shrinking Surface
Academic session	: 2022/2023

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

	Contains confidential information under the official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/Dean of CGS/ Chief Librarian

970412-10-5616

IC/Passport No.

Dr Nor Ain Azeany binti Mohd Nasir

**Name of Supervisor/Dean of CGS/ Chief Librarian

Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

TITLE

ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL APPROVAL DECLARATION OF THESIS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES		
CHAPTER 1	 INTRODUCTION 1.1 Heat Transfer 1.1 Conduction 1.2 Convection 1.3 Radiation 1.2 Non-Newtonian Fluid 1.3 Hybrid Nanofluid 1.4 Boundary Layer Flow 4.1 Momentum boundary layer 4.2 Thermal boundary layer 1.4 Boundary Layer Flow on Moving Surfaces 1.6 Dimensionless Numbers 6.1 Reynolds number (Re) 6.2 Prandtl number (Pr) 6.3 Eckert number (Ec) 1.6.4 Brinkmann number (Br) 1.7 Physical Parameters 7.1 Skin friction coefficient 7.2 Nusselt number 7.3 Entropy generation 1.8 Importance and Contributions of Research 1.9 Objectives and Research Scope 1.10Framework of Research	$ \begin{array}{c} 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 4\\ 6\\ 7\\ 8\\ 9\\ 12\\ 12\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 15\\ 17\\ 18\\ 20\\ 21\\ \end{array} $
CHAPTER 2	 LITERATURE REVIEW 2.1 Introduction 2.2 Nanofluid/Hybrid Nanofluid with Graphene Oxide (GO) as Nanoparticle 2.3 Powell Eyring Fluid 2.4 Magnetohydrodynamic (MHD) Flow 	23 23 23 23 27 31

	2.5 Entropy Generation Analysis	35
CHAPIER 3	3 1 Introduction	40
	3.2 Governing Equations (Tiwari and Das Model)	40
	3.2.1 Basic Equations	41
	3.2.2 Magnitude Level Analysis	46
	3.2.3 Similarity Transformations	56
	3.3 Numerical Method	58
	3.4 Stability Analysis	61
CHAPTER 4	INFLUENCE OF THERMAL RADIATION ON MHD G	0-
	Fe ₂ O ₄ /C ₂ H ₆ O ₂ FLOW OVER A SHRINKING SURFACE	66
	4.1 Introduction	66
	4.2 Mathematical Modelling	68
	4.3 Solutions of the Problem	72
	4.4 Stability Analysis	75
	4.5 Results and Discussion	78
	4.6 Conclusions	92
CHAPTER 5	VELOCITY AND THERMAL SLIP IMPACT TOWARD	S
	GO-M0S2/C3H8O3 FLOWING ON A SHRINKING RIGA	04
	5 1 Introduction	94 04
	5.2 Mathematical Modelling	94
	5.3 Solutions of the Problem	99
	5.4 Stability Analysis	101
	5.5 Results and Discussion	105
	5.6 Conclusions	124
CHAPTER 6	ANALYSIS OF GO-M0S2/C2H6O2 TRANSPORTATION	IN
	STAGNATION POINT FLOW OVER A SHRINKING	
	SURFACE	126
	6.1 Introduction	126
	6.2 Mathematical Modelling	127
	6.3 Solutions of the Problem	129
	6.4 Stability Analysis	132
	6.5 Results and Discussion	136
	0.0 Conclusions	147
CHAPTER 7	CONCLUSION	149
	7.2 Enture Studios	149
DEFEDENCES	1.2 Future Studies	152
A DDENDICES		133
RIODATA OF S	TUDENT	193
LIST OF PUBL	ICATIONS	194

LIST OF TABLES

TAB	E NO. TITLE PAG	ЗE
Tabl	3.1 Physical properties for hybrid nanofluid (Devi and Devi, 2016)	44
Tabl	3.2 Magnitude level analysis for continuity equation	48
Tabl	3.3 Magnitude level analysis for momentum- <i>x</i> equation	50
Tabl	3.4 Magnitude level analysis for momentum-y equation	51
Tabl	3.5 Magnitude level analysis for energy equation	53
Tabl	4.1 Thermophysical characteristic of nanoparticles and base liquid. (Ali et al., 2020; Jamaludin et al., 2020; Alwawi et al., 2020)	72
Tabl	4.2 Comparison of skin friction coefficient $f''(0)$ when $Ec = M = 0$	79
Tabl	4.3 Skin friction coefficient, local Nusselt number, and entropy generation, when $\alpha = -1.4$	84
Tabl	5.1 Values of nanoparticles and based fluid thermo-physical properties. (Khan et al., 2022c; Patil et al., 2021; Sadiq et al., 2022)	101
Tabl	5.2 Comparison of $f''(0)$ for $S = Q_0 = Rd = 0$ and $Pr = 1.0$	105
Tabl	5.3 Numerical outcomes for skin friction coefficient, local Nusselt number and entropy generation when $\alpha = -4.4$	115
Tabl	6.1 Values of nanoparticles and base fluid thermo-physical properties. (Alwawi et al., 2020; Ali et al., 2020; Yaseen et al., 2022)	132
Tabl	6.2 Values of skin friction coefficient, local Nusselt number and entropy generation when $\alpha = -2$	141

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE	2
Figure 1.1	l Fluid flow on a flat plate		6
Figure 1.2	2 Momentum boundary layer on a flat surface		7
Figure 1.3	3 Thermal boundary layer on a flat plate when $T_{\infty} > T_w$		8
Figure 1.4	Thermal boundary layer on a flat plate when $T_w > T_\infty$		9
Figure 1.5	5 Stretching surface		10
Figure 1.6	Shrinking surface		11
Figure 1.7	V Stagnation point flow on a flat surface		12
Figure 3.1	Calculation for stability analysis		65
Figure 4.1	A shrinking plate model		69
Figure 4.2	2 Stability Analysis		78
Figure 4.3	Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied <i>M</i> and $Bi = 0.1$, Ec = 0.01, <i>Re</i> $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$	d = 0.1,	80
Figure 4.4	Nusselt number $Nu_x \operatorname{Re}_x^{-1/2}$ for varied M and $Bi = 0.1$, $\operatorname{Ec} = Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$	0.01,	80
Figure 4.5	Entropy generation $N_G \operatorname{Re}^{-1}$ for varied M and $Bi = 0.1$, $\operatorname{Ec} = Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$	0.01,	81
Figure 4.6	5 Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied ϕ_2 and $Bi = 0.1$, Ec = 0.01, R $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	d = 0.1,	82
Figure 4.7	Nusselt number $Nu_x \operatorname{Re}_x^{-1/2}$ for varied ϕ_2 and $Bi = 0.1$, Ec = $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	0.01,	82
Figure 4.8	³ Entropy generation $N_G \operatorname{Re}^{-1}$ for varied ϕ_2 and $Bi = 0.1$, Ec = $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$: 0.01,	83
Figure 4.9	$f'(n)$ for varied M and $Bi = 0.1$, $Ec = 0.01$, $Rd = 0.1$, $\chi = 0.1$, $\epsilon = 0.1$	0.1, ς =	85
Figure 4.1	10 $\theta(n)$ for varied <i>M</i> and <i>Bi</i> = 0.1, Ec = 0.01, <i>Rd</i> = 0.1, $\chi = 0.1, \epsilon = 0.1$	0.1, ς =	86

Figure 4.11 $f'(n)$ for varied ϵ and $Bi = 0.1$, $Ec = 0.01$, $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $M = 0.1$	87
Figure 4.12 $\theta(n)$ for varied ϵ and $Bi = 0.1$, $Ec = 0.01$, $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $M = 0.1$	87
Figure 4.13 $f'(n)$ for varied ϕ_2 and $Bi = 0.1$, Ec = 0.01, $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	88
Figure 4.14 $\theta(n)$ for varied ϕ_2 and $Bi = 0.1$, Ec = 0.01, $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	= 89
Figure 4.15 $\theta(n)$ for varied <i>Rd</i> and <i>Bi</i> = 0.1, Ec = 0.01, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	90
Figure 4.16 $\theta(n)$ for varied Ec and $Bi = 0.1$, $Rd = 0.1$, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	91
Figure 4.17 $\theta(n)$ for varied <i>Bi</i> and Ec = 0.01, <i>Rd</i> = 0.1, $\chi = 0.1$, $\varsigma = 0.1$, $\epsilon = 0.1$, $M = 0.1$	91
Figure 5.1 Physical model of a Riga plate with shrinking surface	98
Figure 5.2 Stability analysis for equations (5.13) - (5.15)	104
Figure 5.3 Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied <i>G</i> and Ec = 0.1, <i>H</i> = 0.1, <i>Q</i> ₀ = 0.1, <i>Rd</i> = 0.5, <i>S</i> = 2, χ = 0.1, ς = 0.1, Δ = 0.1, ϵ = 0.5	107
Figure 5.4 Nusselt number $Nu_{\chi} \operatorname{Re}_{\chi}^{-1/2}$ for varied <i>G</i> and Ec = 0.1, <i>H</i> = 0.1, $Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \zeta = 0.1, \Delta = 0.1, \epsilon = 0.5$	107
Figure 5.5 Entropy generation $N_G \text{Re}^{-1}$ for varied G and Ec = 0.1, $H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$	- 108
Figure 5.6 Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied Δ and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \epsilon = 0.5$	109
Figure 5.7 Nusselt number $Nu_{\chi} \operatorname{Re}_{\chi}^{-1/2}$ for varied Δ and Ec = 0.1, G = 0.1, H = 0.1, $Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \epsilon = 0.5$	109
Figure 5.8 Entropy generation $N_G \text{Re}^{-1}$ for varied Δ and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \epsilon = 0.5$	110
Figure 5.9 Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied ϵ and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \zeta = 0.1, \Delta = 0.1$	111
Figure 5.10 Nusselt number $Nu_x \operatorname{Re}_x^{-1/2}$ for varied ϵ and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1$: 111

Figure 5.11 Entropy generation $N_G \text{Re}^{-1}$ for varied ϵ and Ec = 0.1, G = 0.1, H = 0.1, $Q_0 = 0.1$, Rd = 0.5, S = 2, $\chi = 0.1$, $\varsigma = 0.1$, $\Delta = 0.1$ 112

Figure 5.12 Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied ϕ_2 and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 113

Figure 5.13 Nusselt number $Nu_x \operatorname{Re}_x^{-1/2}$ for varied ϕ_2 and $\operatorname{Ec} = 0.1, G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \zeta = 0.1, \Delta = 0.1, \epsilon = 0.5$ 113

Figure 5.14 Entropy generation $N_G \text{Re}^{-1}$ for varied ϕ_2 and Ec = 0.1, G = 0.1, $H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 114

Figure 5.15
$$f'(n)$$
 for varied ϵ and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1$ 116

- Figure 5.16 $\theta(n)$ for varied ϵ and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1$ 117
- Figure 5.17 f'(n) for varied S and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 118
- Figure 5.18 $\theta(n)$ for varied S and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 118
- Figure 5.19 f'(n) for varied ϕ_2 and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 119
- Figure 5.20 $\theta(n)$ for varied ϕ_2 and Ec = 0.1, $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 120
- Figure 5.21 $\theta(n)$ for varied *H* and Ec = 0.1, *G* = 0.1, *Q*₀ = 0.1, *Rd* = 0.5, *S* = 2, $\chi = 0.1, \zeta = 0.1, \Delta = 0.1, \epsilon = 0.5$ 121
- Figure 5.22 $\theta(n)$ for varied *Rd* and Ec = 0.1, *G* = 0.1, *H* = 0.1, *Q*₀ = 0.1, *S* = 2, $\chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 122
- Figure 5.23 $\theta(n)$ for varied Ec and $G = 0.1, H = 0.1, Q_0 = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 123
- Figure 5.24 $\theta(n)$ for varied Q_0 and $G = 0.1, H = 0.1, Ec = 0.1, Rd = 0.5, S = 2, \chi = 0.1, \varsigma = 0.1, \Delta = 0.1, \epsilon = 0.5$ 123

Figure 6.1 Shrinking porous horizontal plate model128

Figure 6.2 Stability analysis for equations (6.17)- (6.19)135

Figure 6.3 Skin friction $C_f \operatorname{Re}_{\chi}^{\frac{1}{2}}$ for varied *M* and Ec = 0.1, *Rd* = 1.0, *S* = 2, $\chi = 0.1, \varsigma = 0.1$

- Figure 6.4 Nusselt number $Nu_x \operatorname{Re}_x^{-1/2}$ for varied *M* and Ec = 0.1, *Rd* = 1.0, $S = 2, \chi = 0.1, \varsigma = 0.1$ 137
- **Figure 6.5** Entropy generation $N_G \operatorname{Re}^{-1}$ for varied *M* and Ec = 0.1, Rd = 1.0, S = 2, $\chi = 0.1$, $\varsigma = 0.1$ 138

Figure 6.6 Skin friction $C_f \operatorname{Re}_x^{\frac{1}{2}}$ for varied ϕ_2 and Ec = 0.1, $M = 0.1, Rd = 1.0, S = 2, \chi = 0.1, \varsigma = 0.1$ 139

- Figure 6.7 Nusselt number $Nu_x \operatorname{Re}_x^{-1/2}$ for varied ϕ_2 and $\operatorname{Ec} = 0.1, M = 0.1, Rd = 1.0, S = 2, \chi = 0.1, \varsigma = 0.1$ 139
- Figure 6.8 Entropy generation $N_G \text{Re}^{-1}$ for varied ϕ_2 and Ec = 0.1, M = 0.1, $Rd = 1.0, S = 2, \chi = 0.1, \varsigma = 0.1$ 140

Figure 6.9 f'(n) for varied M and Ec = 0.1, Rd = 1.0, S = 2, $\chi = 0.1$, $\varsigma = 0.1$ 142

- **Figure 6.10** $\theta(n)$ for varied *M* and Ec = 0.1, Rd = 1.0, S = 2, $\chi = 0.1$, $\varsigma = 0.1$ 142
- Figure 6.11 f'(n) for varied S and Ec = 0.1, M = 0.1, Rd = 1.0, $\chi = 0.1$, $\varsigma = 0.1$ 0.1 143
- Figure 6.12 $\theta(n)$ for varied S and Ec = 0.1, M = 0.1, Rd = 1.0, $\chi = 0.1$, $\varsigma = 0.1$
- Figure 6.13 f'(n) for varied ϕ_2 and Ec = 0.1, $M = 0.1, Rd = 1.0, S = 2, \chi = 0.1, \varsigma = 0.1$ 145
- Figure 6.14 $\theta(n)$ for varied ϕ_2 and Ec = 0.1, $M = 0.1, Rd = 1.0, S = 2, \chi = 0.1, \varsigma = 0.1$ 145

Figure 6.15 $\theta(n)$ for varied *Rd* and Ec = 0.1, *M* = 0.1, *S* = 2, $\chi = 0.1$, $\varsigma = 0.1$ 146

Figure 6.16 $\theta(n)$ for varied Ec and $M = 0.1, Rd = 1.0, S = 2, \chi = 0.1, \varsigma = 0.1.$ 147

LIST OF ABBREVIATIONS

AuNP	-	Gold nanoparticle
$C_2H_6O_2$	-	Ethylene Glycol
$C_3H_8O_3$	-	Glycerine
CNT	-	Carbon nanotube
CuNP	-	Copper nanoparticle
EMHD	-	Electromagnetohydrodynamic
Fe ₂ O ₄	-	Iron Dioxide
GO	-	Graphene Oxide
H ₂ O	-	Water
MHD	-	Magnetohydrodynamic
MoS_2	-	Molybdenum Disulfide
ODE	-	Ordinary Differential Equation
PDE	-	Partial Differential Equation
PV	-	Photovoltaic

LIST OF SYMBOLS

a, b	-	Constant
B_0	-	Strength of magnetic field
B _r	-	Brinkmann Number
Bi	-	Biot Number
C_{f}	-	Skin Friction Coefficient
C_p	-	Specific Heat Capacity
D	-	Dimensional Temperature Jump Parameter
Ec	-	Eckert Number
E_G	-	Entropy Generation
G	-	Hartman Number
h	-	Convection Heat Transfer Coefficient
Η	-	Thermal Slip
Ι	-	Identity Tensor
j ₀	-	Applied Current Density
k	-	Thermal Conductivity
k^*	-	Absorption Parameter
L	-	Length Of Surface
m_0	-	Characteristic Magnetisation
М	-	Magnetic Parameter
N_G	-	Dimensionless Entropy Generation
Nu	-	Nusselt Number
Nu_x	-	Local Nusselt Number
p	-	Pressure
Pr	-	Prandtl Number
Q	-	Heat Absorption/Generation Constant
Q_0	-	Heat Absorption/Generation Parameter
q_r	-	Radiation Heat Flux
q_w	-	Heat Flux
U_w	-	Surface Velocity

Rd	-	Radiation Parameter
Re	-	Reynolds Number
S	-	Suction/Injection
t	-	Time
Т	-	Temperature of Fluid
T_w	-	Surface Temperature
T_{∞}	-	Ambient Temperature
и, v	-	Velocity Components Along x-Axis and y-Axis
u_e	-	Free stream velocity
V	-	Vector of Hybrid Nanofluid Velocity
<i>x</i> , <i>y</i>	-	Cartesian Coordinates
		Subscripts
С	-	Critical Value
<i>s</i> 1, <i>s</i> 2	-	Particles
hnf	-	Hybrid Nanofluid
f	-	Base Fluid
		Symbols
∇	-	Laplace Operator
Δ	-	Dimensionless Parameter
		Greek Symbols
α	-	Stretching/Shrinking Parameter
eta^* , $arepsilon$	-	Fluid Parameters of Powell-Eyring
γ	-	Eigenvalue
δ	-	Thickness of Boundary Layer
ϵ	-	Velocity Slip
ϵ_0	-	Dimensional Velocity Slip Parameter
η, ψ, ϑ	-	Similarity Transformations
μ	-	Dynamic Viscosity
ν	-	Kinematic Viscosity
ξ	-	Heat Diffusivity
ρ	-	Density
$ ho C_p$	-	Heat Capacity
σ	-	Electric Conductivity

σ^*	-	Stefan Constant
ς, χ	-	Material Parameters
τ	-	Dimensionless Time Variable
$ au_c$	-	Cauchy Stress Tensor
$ au_{ij}$	-	Stress Tensor
$ au_w$	-	Wall Shear Stress
ϕ	-	Concentration
ϕ_a	-	Ratio of Dynamic Viscosity for Hybrid Nanofluid
ϕ_b	-	Ratio of Density for Hybrid Nanofluid
ϕ_c	-	Ratio of Heat Capacity for Hybrid Nanofluid
ϕ_d	-	Ratio of Thermal Conductivity for Hybrid Nanofluid
ϕ_e	-	Ratio of Electrical Conductivity for Hybrid Nanofluid
ω	-	Width of Electrodes

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	: Similarity Transformations for Boundary Layer Flow Problem (Chapter IV)	166
Appendix B :	: Derivation of Physical Quantities (Chapter IV And V)	169
Appendix C :	Bvp4c Function in Gaining Dual Solutions for Boundary Layer Flow Problem (Chapter IV)	172
Appendix D	: Continuation Technique by Bvp4c Function for Boundary Layer Flow Problem (Chapter IV)	175
Appendix E :	Bvp4c Function in Acquiring Smallest Eigenvalue for Upper Branch Solution in Boundary Layer Flow Problem (Chapter IV)	177
Appendix F :	Bvp4c Function in Acquiring Smallest Eigenvalue for Lower Branch Solution in Boundary Layer Flow Problem (Chapter IV)	179
Appendix G	: Equations for Stability Analysis (Chapter IV)	180
Appendix H	: Similarity Transformations for Boundary Layer Flow Problem (Chapter V)	187
Appendix I :	Similarity Transformations for Boundary Layer Flow Problem (Chapter VI)	190

CHAPTER 1

INTRODUCTION

1.1 Heat Transfer

Essentially, the motion of energy from one area to another due to the existence of temperature difference is outlined as heat transfer. The roles of heat transfer are either to discard the heat from a system or to seal off the heat in a system. The ability of a device to cool or heat enormously depends on the speed and amount of heat transported. Liquids can aid in transmitting heat between surfaces and fluid in machines when there is imbalance of heat. Hence, it is exceptionally vital to investigate ways to upgrade the thermal properties of liquids to boost their heat transfer capability. Countless scholars have explored the thermal properties of fluids by manipulating the type of fluids, surfaces, and external sources of effects. This research area is favoured by many owing to its significance in plenty of tools and appliances, including the solar power system, aeroplanes, nuclear devices, and oil and gas sector. Basically, heat transfer can be attained by a few means namely conduction, convection, and radiation.

1.1.1 Conduction

In conduction, there is no motion of the fluid. The dissimilarity of temperature in two different spaces leads the heat to transmit from a heated area to a chilled area. In the long run, thermal equilibrium will be reached as the difference in temperature diminishes.

1.1.2 Convection

Unlike conduction, an immense motion in convection leads to the shifting of heat. It is compulsory for convection to have advection and diffusion. Advection is the heat conveyed by the huge motion in the liquid, while diffusion is the Brownian motion of the particles in the liquid. Convection can only occur across liquids and gases or between solid and liquid. Two types of convection are natural convection and forced convection. Natural convection arises when there is a density difference in the heated fluid. Forced convection is regulated by external factors that are located outside of the system, such as pumps. It does not occur due to the heated fluid. Instead of natural convection, a higher rate of thermal transmission is more doable in forced convection.

1.1.3 Radiation

In radiation, nothing is swapped, and no medium is required. When the particles vibrate, it creates electromagnetic waves that transmit energy through radiation. The radiation energy does not only emerge from the surface but the entire spot of the body. Temperature gradient is absent in radiation. Thus, an object close to the source still gets to experience the heat.

1.2 Non-Newtonian Fluid

Newtonian fluids have uniform and unchanged viscosity, while non-Newtonian fluid's viscosity is not consistent and will change when a dissimilar size of force is applied. Principally, non-Newtonian fluid does not stick to Newton's law of viscosity. The non-linear manner of non-Newtonian fluid is impracticable to be solved analytically, and this type of fluid often has power law relationship. One of the traits of non-Newtonian fluid is that shear stress is nonlinear to the shear rate. This relationship is known as the velocity gradient. Blood, paints, shampoos, oils, polymers, starches, and dyes are examples of non-Newtonian fluids. Toothpaste can be used to explain the viscous behaviour of non-Newtonian liquid. When the cap is opened, the toothpaste will not come out even if the tube is upside down. However, only when we apply force to the tube the toothpaste will flow out and acts as a liquid. This proved the inconsistency of viscosity in non-Newtonian fluid.

Newtonian fluid can be explained using a single reference equation. However, it is not the case for non-Newtonian fluid because of its rheological features. These rheological features constitute of stress, viscosity and so on, and can only be figured out using constitutive equations. Constitutive equations are compulsory to interpret the distinct connection between the stress and shear rates of non-Newtonian liquids. These tangled properties require an advanced fluid model to inspect the fluid flow rather than the basic Navier-Stokes equations. On that account, a lot of scholars have established several non-Newtonian models with diverse thermophysical details of this type of