BLAST LOADING CHARACTERISTICS OF SHALLOWLY BURIED EXPLOSIVE IN IN-SITU RESIDUAL SOIL

ZULKIFLI ABU HASSAN

DOCTOR OF PHILOSOPHY (CIVIL ENGINEERING)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2022

BLAST LOADING CHARACTERISTICS OF SHALLOWLY BURIED EXPLOSIVE IN IN-SITU RESIDUAL SOIL

ZULKIFLI ABU HASSAN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Doctor of Philosophy (Civil Engineering)

ABSTRACT

Detonated landmine transfers blast load upwards above ground. However, the transmitted blast load magnitude depends on the type and condition of the soil where the detonation occurred. Although many studies have been carried out to investigate soil effects and quantify blast data regarding landmine detonation, no data on the effect of soils in natural conditions are available. Most of the previous shallow-buried blast experimental works were laboratory-based, involved large testing facilities and were mainly carried out in remoulded soil beds. In this study, a 1/10th scale test apparatus consisting of a 0.5 m x 0.5 m square steel jig and a five mm-thick steel target plate was used to quantify blast loading in in-situ residual soil. A high-speed video camera and a piezoelectric shock accelerometer were used to measure the blast loading parameter. The landmine explosion simulation was replicated using a 20gram high-explosive charge detonated at a constant depth of burial (DOB). By using small-scale test setups, this study aims to measure blast loading intensities and the effect of ejecta on amplifying the velocity of translated above-ground-structure during blast events on in-situ soil. Test results showed that the average energy transfer in detonation in in-situ 'Bentong' residual soil was four times higher than silica sand. The second upsurge in plate acceleration was also detected during detonation in soils which emanated from the impact of ejecta. The upsurge amplified plate velocity to about 18% and 20% in in-situ soil and silica sand test, respectively. Correlation of test results observation and 'detonation phases in soils' with post-test crater profiles showed that unique crater properties and profiles in silica sand bed and in-situ 'Bentong' soil delivered distinct blast waves. Unique crater's profile transmitted distinct ejecta characteristics that consequently amplify the magnitude of blast load.

ABSTRAK

Periuk api yang diletupkan memindahkan beban letupan ke arah atas permukaan tanah. Walau bagaimanapun, magnitud beban letupan yang dihantar bergantung kepada jenis dan keadaan tanah di mana letupan berlaku. Walaupun banyak kajian telah dijalankan untuk menyiasat kesan tanah dan mengukur data letupan mengenai letupan periuk api, tiada data tersedia tentang kesan tanah dalam keadaan semulajadi. Kebanyakan kerja-kerja eksperimen letupan tertimbus cetek sebelum ini adalah berasaskan makmal, melibatkan kemudahan ujian yang besar dan kebanyakannya dijalankan di atas tanah yang dibentuk semula. Dalam kajian ini, radas ujian skala 1/10 yang terdiri daripada jig keluli persegi 0.5 m x 0.5 m dan plat sasaran keluli setebal lima mm digunakan untuk mengukur bebanan letupan dalam tanah in-situ. Kamera video berkelajuan tinggi dan peranti pecutan piezoelektrik digunakan untuk mengukur parameter pemuatan letupan. Simulasi letupan periuk api telah direplikasi menggunakan cas letupan tinggi seberat 20 gram yang diletupkan di dalam tanah pada kedalaman yang konsisten. Menggunakan persediaan ujian berskala kecil, kajian ini adalah bertujuan untuk mengukur keamatan bebanan letupan dan kesan letupan yang menyebabkan perubahan halaju struktur-atas-tanah semasa ia bergerak ke atas sewaktu kejadian letupan. Keputusan ujian menunjukkan purata pemindahan tenaga dalam letupan dalam tanah 'Bentong' in-situ adalah empat kali lebih tinggi daripada pasir silika. Peningkatan kedua dalam pecutan plat juga dikesan semasa letupan dalam tanah yang datang daripada kesan ejecta. Kenaikan itu masing-masing meningkatkan halaju plat kepada kira-kira 18% dan 20% dalam ujian tanah in-situ dan pasir silika. Korelasi pemerhatian hasil ujian dan 'fasa letupan dalam tanah' dengan profil kawah pasca letupan menunjukkan bahawa sifat dan profil kawah adalah unik dalam dasar pasir silika dan tanah 'Bentong' in-situ. Keadaan tersebut merupakan faktor yang mempengaruhi hasil gelombang letupan dan ciri-ciri hamburan ejekta yang boleh mempertingkatkan magnitud beban letupan.

ACKNOWLEDGEMENT

Praise be to Allah the most gracious, most merciful for the strength, knowledge, peace of mind and good health to undertake and complete this thesis. This study would not have been possible without the kind support and help of many individuals.

I would like to extend my sincere thanks to my supervisor, Assoc. Prof. Dr. Aniza Ibrahim who read my numerous revisions and helped make some sense of the confusion. Also, thanks to my co-supervisors, Brig. Gen. Prof. Ir. Dr. Norazman Mohamad Nor (R), who offered guidance and support. Thanks to my colleague Dr. Noor Aina Misnon who helped to proof-format the thesis write-up, your assistance will always be remembered.

I would like to express my gratitude to my family for the encouragement which helped me in the completion of this thesis. My beloved and supportive wife, Shafiza Diana Baharuddin, who is always by my side when times I need her most and helped me a lot in making this study, and my lovable child, Ahmad Uzayr, whose presence is the greatest gift.

Finally, thanks to all my colleagues and members of the Department of Civil Engineering, National Defence University of Malaysia, for their continuous encouragement and support during my PhD.

APPROVAL

The Examination Committee has met on **17 May 2022** to conduct the final examination of **Zulkifli bin Abu Hassan** on his degree thesis entitled **'Blast Loading Characteristics of Shallowly Buried Explosive in In-Situ Residual Soil'.**

The committee recommends that the student be awarded the of Doctor of Philosophy (Civil Engineering).

Members of the Examination Committee were as follows.

Prof. Dr. Risby bin Mohd Sohaimi

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Prof. Ir. Dr. Mohammed Alias bin Yusof

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Madya Ts. Dr. Mazidah binti Mukri

Faculty of Civil Engineering Universiti Teknologi MARA (External Examiner)

Prof. Madya Ir. Dr. Felix Ling Ngee Leh

Faculty of Engineering Universiti Tun Hussien Onn (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Doctor of Philosophy (Civil Engineering)**. The members of the Supervisory Committee were as follows.

Prof. Madya Dr. Aniza binti Ibrahim

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Brig. Gen. Prof. Ir. Dr. Norazman bin Mohamad Nor (R) Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: Zulkifli Abu H	assan			
Date of birth	: 31/07/67				
Title	:BLAST LO SHALLOWLY RESIDUAL SO	ADING BURIED	CHARACTER EXPLOSIVE	ISTIC IN	S OF IN-SITU
Academic session	: 2 2021/22				

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

**Signature of Supervisor/Dean of CGS/ Signature Chief Librarian 670731085355 Assoc. Prof. Dr. Aniza Ibrahim **Name of Supervisor/Dean of CGS/ IC/Passport No. Chief Librarian Date:

Date:

*If the thesis is CONFIDENTAL OR RESTRICTED, please attach the letter from the organisation with period and reasons for confidentiality and restriction. ****** Witness

TABLE OF CONTENT

TITLE

PAGE

ABSTRACT ABSTRAK ACKNOWLED APPROVAL APPROVAL DECLARATIO TABLE OF CO LIST OF TABI LIST OF FIGU LIST OF ABBF	OGEMENT ON OF THESIS ONTENT LES RES REVIATIONS	ii iii v vi vii viii ix xiii xiv xxiii
CHAPTER 1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	4
	1.3 Aims and Objectives	7
	1.4 Research Scope	8
CHAPTER 2	LITERATURE REVIEW	10
	2.1 Introduction	10
	2.2 Brief History of Landmines	10
	2.3 Type of Landmines	12
	2.3.1 Anti-Personnel Mines (AP)	13
	2.3.2 Anti-Vehicle Mines (AVMs)	14
	2.3.3 AVMs Threat	18
	2.3.4 Landmine Treaty	19
	2.4 High Explosive Detonation	20
	2.4.1 The Reaction of High Explosive	21
	Detonation	21
	2.5 Charges Detonated Above Ground	22
	2.5.1 Characteristics of the Blast Wave	23
	2.6 Detonation Far Distance Above Ground	29
	2.7 Detonation Near the Ground Surface	30
	2.8 Defonation on Ground Surface	32
	2.9 Effect of Landmine Blast	33
	2.9.1 Injury Mechanism of Landmine Blast in Open Field	25
	202 Landmine Blast Effect Under Armoured	55
	2.9.2 Landmine Blast Effect Onder Affiloured	26
	203 Injury Mechanisms	20 20
	2.7.3 Injury incontanions 2.9.4 Consideration in Response to Mine Plast	30
	Effect to Vehicle Occupants	40
	295 NATO Standardisation Agreement 1560	40
	(STANAG 4569)	41
	ix	11

	2.9.6 Allied Engineering Publication 55 (AEP-	
	55)	42
	2.10 Studies to Mitigate Blast Impact from	
	Landmine Explosion	44
	2.11 Mitigation of Blast Impact and Development of	
	Protective Hull Design	45
	2.11.1 Findings in Numerical Analyses	47
	2.12 Challenges in Testing of Protective System	
	against Buried Mine Blast	49
	2.12.1 Testing Condition in Soil Bed	50
	2.13 Effect of Soil Types on Impulse Transfer	52
	2.13.1 Effects on V-Plate Variants	55
	2.14 Buried explosion	56
	2.15 Detonation of Shallow Buried Explosive	57
	2.15.1 Phase 1 – Detonation and Early	
	Interaction with the Soil	57
	2.15.2 Phase 2 – Gas Expansion	60
	2.15.3 Phase 3 – Soil Ejecta	63
	2.16 Craters Formation in a Shallow-Buried	
	Explosion.	65
	2.17 Experimental Findings Related to the Effect of	
	Soil Properties on Blast Loading (Impulse	
	Intensity)	68
	2.17.1 Effects of Depth of Burial (DOB)	69
	2.17.2 Soil Properties Effects on Buried	
	Explosion	71
	2.18 Tropical Residual Soil	84
	2.18.1 Effect of Different Composition in	05
	Residual Soil	85
	2.19 Landmine Blast Testing	88
	2.19.1 Large Scale Blast Testing Method and	00
	Facilities	89
	2.19.2 Small-Scale Blast Test Method and	0.4
	Facilities	94
	2.19.3 Small-Scale Blast Test Method and	07
	Facilities for Effect of Soll Properties	97
	2.20 Summary of Experimental Methods on	102
	2 21 Desceret Cor	103
	2.21 Research Gap	108
CHAPTER 3	METHODOLOGY	109
	3.1 Introduction	109
	3.2 Brief Outline of the Experimental Test	111
	3.3 Design of the Apparatus	114
	3.3.1 Construction of the Test Jig	116
	3.3.2 Target Plate	119
	3.3.3 Installation of instrumentation	120
		-

3	.4 Explo	sive Charge	122
	3.4.1	Explosive Charge TNT Equivalence	125
	3.4.2	Charge Assembly	126
3	.5 Gaugi	ng Tools for Depth of Burial	128
	3.5.1	Application of Gauging Tools	131
3	.6 Obser	vation Equipment	132
	3.6.1	High-Speed Video Camera	132
	3.6.2	Piezoelectric Shock Accelerometer	133
3	.7 Air Bl	last Test Setup	135
	3.7.1	Preparation for the Air Blast Setup	137
3	.8 Buried	d in Silica Sand Bed Test Setup	140
	3.8.1	Preparation of Silica Sand Bed	141
	3.8.2	Placement of Explosive Charge in Test	
		Bed	143
	3.8.3	Post-Test Test Bed Preparation	148
3	.9 Buried	d in In-Situ Soil Test Setup	150
	3.9.1	Preparation of Explosive Charge	
		Placement in In-Situ Soil	151
3	.10 Obse	ervation Methods	157
	3.10.1	Optical Observation – High-Speed Video	
		Camera	158
	3.10.2	Instrumentation Method (Plate	
		Acceleration Observation)	164
3	.11 Soil	Properties Derivation	169
	3.11.1	Determination of Soil Particles Size	
		Distribution	169
	3.11.2	Determination of Unit Weight	170
	3.11.3	Determination of Plastic Limit and	
		Liquid Limit	170
	3.11.4	Determination of In-Situ Undrained Soil	
		Strength	171
3	.12 Corr	elation of Post-Blast Event Effects	171
3	.13 Sum	mary of Chapter 3	172
Е	DESIII T	S AND DISCUSSIONS	173
Г Л	1 Introd	yation	173
4	$2 \operatorname{Tort} \Lambda$	apparetus and Saturg Efficiency Validation	173
-	121	Air Blast Tests	174
	4.2.1	Riast in Sand Tests (Detonation in Silica	1/4
	7.2.2	Sand Bed)	180
	423	Comparison of Air-Blast Tests and Blast	100
	7.2.3	in Sand Tests	186
	474	Energy Transfer in AT and ST Tests	188
	425	Initial Velocity in AT and ST Tests	189
	426	Soil Effect in ST Test	191
	4.2.7	Accelerometer Results for AT and ST	171
		Tests	192

CHAPTER 4

		4.2.8	Comparison of Plate Velocity in AT and	
			ST Tests	194
		4.2.9	Testing Setups and Apparatus Efficacy	197
	4.3	Objec	tives Fulfilment from the AT and ST Tests	
		(Stage	e 2 Activities)	198
	4.4	Blast	Tests in Soils	199
		4.4.1	Blast Tests in In-Situ Residual Soil	201
		4.4.2	Flight Height-Time History for Blast	
			Test in In-Situ Residual Soil	204
		4.4.3	Accelerometer Measurement for Blast in	
			In-Situ Residual Soil (RST Test)	207
		4.4.4	Plate Velocities for Tests in Residual	
			Soil (RST tests)	210
	4.5	Blast	Intensity Comparison in Different Test	
		Setup	s 211	
		4.5.1	Comparison of Optical Observation	
			Results in Buried Test Setup	211
		4.5.2	Soil Effects of ST and RST Tests	214
		4.5.3	Comparison of Accelerometer	
			Measurement Results	215
		4.5.4	Comparison of Average Velocity	220
		4.5.5	Estimation of Velocity Amplification	221
	4.6	Objec	tive Fulfilment from the ST and RST Tests	
		(Stage	e 2 & 3 Activities)	224
	4.7	Post-I	Blast Tests Craters Observation Results	225
		4.7.1	Detonation in Silica Sand Bed	225
		4.7.2	Detonation in In-Situ Residual Soil –	
			'Bentong Soil.'	228
	4.8	Corre	lation of Blast Phase in Soil with Crater	
		Forma	ation	231
		4.8.1	Detonation Phase in Silica Sand	232
		4.8.2	Detonation Phase in In-Situ Bentong Soil	237
	4.9	Objec	tive Fulfilment from Post-Blast Test	
		Crate	rs (Stage 3 Activities)	241
	4.10	0 Crat	er Profiles, Optical Observation and Plate	
		Acce	eleration	241
	4.1	1 Sum	imary	242
CHAPTER 5	CO	NCLU	USIONS AND RECOMMENDATIONS	244
	5.1	Introd	luction	244
	5.2	Concl	usions	245
	5.3	Recor	nmendations	247
REFERENCES				250
APPENDICE				261
BIODATA OF S	TUD	ENT		262
LIST OF PUBL	ICA	TIONS		263

LIST OF TABLES

TABLE	NO. TITLE		PAGE
Table 2-1	Experimental Test on Landmine Blast Re	lated Simulations	104
Table 3-1	Series of blast tests performed in Sta experimental study	ge 1, 2 & 3 of the	111
Table 3-2	Test apparatus components descriptions		122
Table 3-3	Description of the explosive charge and c	letonator	128
Table 3-4	Air-blast setup specifications and observa	ation methods	139
Table 3-5	Conversion of vertical distance in pixel to position	mm based on marker	162
Table 4-1	Soil parameters of 'Bentong' soil and sil	ica sand	201

LIST OF FIGURES

FIGURE NO.

TITLE

Figure 1.1 Malaysia APCs in the United Nations (UN) peacekeeping operations a) UN Operation in Somalia II (UNOSOM II), b) Implementation Force (IFOR) in Bosnia & Herzegovina	2
Figure 1.2 A faster new generation of Malaysian made HMAV	3
Figure 1.3 Specific impulse–time history showing late- time contribution of Phase 3 to the total imparted impulse (Rigby, et al., 2016).	7
Figure 2.1 A non-explosive mines known as 'caltrop' used to injure the attacking troop during the Roman empire	11
Figure 2.2 Various types of AP mines carrying explosive charge weight between 50 to 250 grams	13
Figure 2.3 Types of AV mines carrying explosive charge weight range between 5 to 7 kg.	16
Figure 2.4 Ideal shock front of a blast wave shows the variation of overpressure with distance in the fireball (Glasstone & Nolan, 1977)	24
Figure 2.5 Variation of blast pressure with distance (Remennikov, 2007)	25
Figure 2.6 Friedlander waveform of pressure-time evolution (Friedlander, 1946)	26
Figure 2.7 Variation of the decay coefficient with scale distance for free- air incidence blast wave (Karlos, et al., 2016)	
Figure 2.8 Free air burst configuration from detonation far distance above ground	
Figure 2.9 Blast wave reflection from detonation near the ground surface	31
Figure 2.10 Ground reflection configuration from detonation near the ground	32
Figure 2.11 Blast wave from a contact surface burst	33
Figure 2.12 Post explosion scene of the Bali bombing	34
Figure 2.13 Radius of destructions of the Beirut explosion incidence	

Figure 2.14 Lethal range and injury mechanism of an unconfined explosion on the ground surface (Wildegger-Gaissmaier, 2003)	36
Figure 2.15 Effect of landmine explosion on local and global deformation of an armoured vehicle affecting the occupant (Kania, 2009)	38
Figure 2.16 Protection levels for occupants of armoured vehicles for grenade and blast mine threats (NATO, 2012)	42
Figure 2.17 Reference test setup for mine buried in water-saturated sandy gravel (NATO, 2011)	43
Figure 2.18 Reference test setup for mine buried in steel pot (NATO, 2011)	43
Figure 2.19 Schematic illustration of the assumption on blast target interaction (Chung, et al., 2012)	46
Figure 2.20 Compound angle V-plates reduce the effect of blast load more effective than single angle V-plates (Chung, et al., 2012)	46
Figure 2.21 Typical position of explosive charge at the bottom of an armoured vehicle undercarriage for blast impact simulation (Slawinski, et al., 2019)	47
Figure 2.22 Simulation of blast wave under an armoured vehicle shows a comparison of blast wave dispersion between the flat hull and V-shape hull (Trajkovski, et al., 2018)	49
Figure 2.23 Test pit construction for detonation in sandy gravel test bed (Roberts, et al., 2016)	51
Figure 2.24 Properties and characteristics of soils used in the study of geotechnical conditions effect on the output of shallowly buried explosive (Clarke, et al., 2016)	53
Figure 2.25 Results of impulse intensity from the detonation of shallow buried explosive in several types of soils of varied properties (Clarke, et al., 2016)	54
Figure 2.26 a- d Explosive interaction with soil immediately after detonation (Ramasamy, et al., 2009)	61
Figure 2.27 Differences in the dry sand and saturated sand landmine detonation characteristics (Grujicic, et al., 2008(b))	62
Figure 2.28 Sequential traces of the ejecta of a 100 g C4 mine explosion buried 8 cm under dry sand. Time $t = 0$ corresponds to the detonation of the explosive (Deshpande, et al., 2009)	64

Figure 2.29 Formation of camouflet resulting from the detonation of explosive charge buried deep underground (Chadwick, et al., 1964)	65
Figure 2.30 Conventional crater profiles (Ambrosini, et al., 2006)	66
Figure 2.31 Phase variations in soil show at constant dry density, bulk density increases as water content increases	77
Figure 2.32 Phase relationship	77
Figure 2.33 Crater profiles produced in different types of soil (Rickman, et al., 2011).	80
Figure 2.34 Intra-particles tight bonding and water trapped within intra- cluster particles (Bayesteh & Mirghasemi, 2015)	83
Figure 2.35 Residual soils of granitic and sedimentary rock origin distribution in Peninsular Malaysia.	86
Figure 2.36 A 30 tons SIIMA on a concrete slab and sand pit at the testing range (Snyman & Reinecke, 2006)	89
Figure 2.37 Experimental test layout of an IMD test facility with steel frame structure (Ehrgott, et al., 2011(b)).	90
Figure 2.38 VIMF setup at experiment test site (left) and VIMF fixture (right) (Grujicic, et al., 2013)	91
Figure 2.39 A removable non-permanent infrastructure of a "free motion" VIMF setup at a testing ground (Bouamoul, et al., 2014).	92
Figure 2.40 A schematic layout for VLIP method using apparatus with the plate mass weight of up to 1.3 tons (Koker, et al., 2009)	93
Figure 2.41 Scaled-down charge mass used in a small scale blast experiment (Hargather & Settles, 2009).	95
Figure 2.42 Experimental setup of a small-scale buried blast on V-shape hull structure (Zhao, et al., 2014)	96
Figure 2.43 Schematic of the "Fixed Plate Approach" of spatial and temporal pressure distribution measurement apparatus (Clarke, et al., 2015).	97
Figure 2.44 Free accelerated approach using piston rig (Hlady, 2004)	99
Figure 2.45 (a) Free-flying mass impulse capture apparatus, (b) Section showing the internal construction of the interface plate, (c) View from underneath the interface plate (with the target plate removed) (Clarke, et al., 2016).	100

Figure 2.46 A 1/3 scale apparatus consisting of; 1 - support stand, 2 - bottom plate, 3 - extra mass, 4 - sensors, 5 - charge (Bochorishvili, et al., 2016)
Figure 2.47 Measurement setup with concentric rings suspended at wire cables (left), screw connection of the wire cables at the rings (right) (Denefeld, et al., 2017)
Figure 3.1 Flowchart of the experimental test
Figure 3.2 Schematic drawing of the test apparatus
Figure 3.3 Steel Jig main structure bottom view and structural members section and elevations
Figure 3.4 Bottom side of the steel frame with 36 numbers of pre-drilled holes for target plate fastening
Figure 3.5 Intervals of pre-drilled holes for target plate fastening
Figure 3.6 Top side of the steel frame view with pre-drilled holes for braces and LVDT casing installation
Figure 3.7 Test jig supported by 4 numbers of adjustable legs at each corner of the steel frame
Figure 3.8 A 5 mm thickness replaceable sacrificial steel target plate
Figure 3.9 Test apparatus and accessories
Figure 3.10 'EMULEX' AN Emulsion high energy explosive in a 200- gram package
Figure 3.11 Technical properties of 'EMULEX' AN Emulsion high energy explosive (Austin Powder Co.)
Figure 3.12 'Rockstar' detonator and its fuse cable
Figure 3.13 A 20 g AN emulsion explosive charge assembly126
Figure 3.14 Preparation of the explosive charge, including moulding and weighing
Figure 3.15 Depth of burial gauging tools consisting of steel mould and steel template
Figure 3.16 Steel Template technical drawing of the exact dimension
Figure 3.17 Steel Mould technical drawing of the exact dimension
Figure 3.18 Phantom v2512 High-Speed Video Camera (Vision Research, 2018)

Figure 3.19 Location for shock accelerometer installation	134
Figure 3.20 Basic specifications of the PCB Piezotronics ICP shock accelerometer - Model 350C23 (PC piezotronics)	134
Figure 3.21 Diagrammatic elevation of the air blast test setup	135
Figure 3.22 Explosive charge positioned facing the target plate by sticking on the polystyrene spacer block	136
Figure 3.23 Final position of a complete air blast test setup	137
Figure 3.24 Plywood container for silica sand bed test	141
Figure 3.25 The silica sand mix is weighted and filled in a plastic bag where the weight is labelled	142
Figure 3.26 Filling up process and compaction of silica sand bed	142
Figure 3.27 Surface of the silica sand bed is level until it is flush with the ground	143
Figure 3.28 The remaining soil is weighted to determine the total weight of silica sand required to fill up the container	143
Figure 3.29 Silica sand is excavated based on the steel template size	144
Figure 3.30 Another offset is created for the explosive charge	145
Figure 3.31 Steel mould is pressed on the ground where the previous offsets	145
Figure 3.32 A well-formed cavity and depth of overburden	145
Figure 3.33 Rod is used to create a slot for detonator	146
Figure 3.34 Placing paper lining at the base	146
Figure 3.35 Cross line to mark the position align to the centre of the explosive charge.	147
Figure 3.36 The test apparatus is position on the ground with reference to the cross line.	147
Figure 3.37 'Free flying' setup of the apparatus for buried explosive	148
Figure 3.38 Shallow buried detonation caused crater to form on the silica sand bed surface	149
Figure 3.39 Top part of the test best is removed and measured after the blast test	149

Figure 3.40 The excavated part is backfilled until it equals the original bulk density of the test bed	150
Figure 3.41 Ground surface clearance for in-situ blast test	151
Figure 3.42 Ground surface levelling is checked	152
Figure 3.43 Steel template is used to create a 10 mm DOB	153
Figure 3.44 Steel mould is used to form a well-shaped offset of DOB and explosive charge placement.	154
Figure 3.45 Paper lining at the base of the offset and detonator ready for insertion	155
Figure 3.46 Crossline marking the centre of the explosive charge	155
Figure 3.47 The centre of the buried explosive charge is marked by the cross line	156
Figure 3.48 Positioning of the test apparatus referring to the cross line	156
Figure 3.49 Test Apparatus at a buried in-situ test setup position	157
Figure 3.50 Air-blast test setup	158
Figure 3.51 Buried in the silica sand bed test setup	158
Figure 3.52 Buried in an in-situ soil test setup	159
Figure 3.53 Marker is attached on the side frame of the test jig for measurement purposes	159
Figure 3.54 The relationship of a known distance in mm and a distance in y-axis pixel	160
Figure 3.55 Test jig vertical movement in vertical order	162
Figure 3.56 Quantifying RMS and Peak to Peak value on sinusoidal waveform	165
Figure 3.57 Quantifying RMS and Peak to Peak value on typical vibration pulse	165
Figure 3.58 Complex mechanical shock pulse from explosive shock motion	166
Figure 3.59 Maximum positive and maximum negative of the peak are numbered	168
Figure 3.60 Plate acceleration time history graph based on the maximum positive and maximum negative peak	168

Figure 4.1 Air-blast detonation effect on the test apparatus at the time interval of 0 seconds to 596 micro-second	176
Figure 4.2 Air-blast detonation effect on the test apparatus at the time interval of 2160 micro-second to 0.1 seconds	177
Figure 4.3 Flight height-time history of air-blast test	180
Figure 4.4 Detonation in silica sand bed effect on the test apparatus at the time interval of 0 seconds to 0.17 seconds	182
Figure 4.5 Detonation in silica sand bed effect on the test apparatus at the time interval of 0.25 seconds to 0.48 seconds	183
Figure 4.6 Flight height-time history of blast in silica sand test	185
Figure 4.7 Test apparatus flight height-time history of air-blast tests (AT) in five-test series.	186
Figure 4.8 Test apparatus flight height-time history of blast in silica sand tests (ST) in three-test series.	187
Figure 4.9 Comparison of total energy transfer in AT and ST tests	189
Figure 4.10 Comparison of initial velocity for full-flight and half-flight in AT tests	190
Figure 4.11 Comparison of initial velocity for full-flight and half-flight in ST tests	190
Figure 4.12 Plate acceleration-time history at 80 mm from centre of target plate for AT tests	193
Figure 4.13 Plate acceleration-time history at 80 mm from centre of target plate for ST tests	194
Figure 4.14 Target plate velocity-time history for tests carried out in air- blast test	195
Figure 4.15 Target plate velocity-time history for blast tests carried out in sand bed	196
Figure 4.16 Average plate velocity in air-blast and blast in sand tests from 0 to 0.012 seconds.	197
Figure 4.17 Particles distribution of 'Bentong' soil and silica sand	200
Figure 4.18 Detonation in in-situ residual soil effect on the test apparatus at the time interval between 0 to 0.26 second	203
Figure 4.19 Flight height-time history of blast in-situ residual soil tests	205

Figure 4.20 Test apparatus flight height-time history of blast in in-situ residual soil tests (RST) in three test series	206
Figure 4.21 Target plate acceleration-time history of blast in in-situ residual soil tests	209
Figure 4.22 Target plate acceleration-time history of blast in in-situ residual soil tests no. 4 (RST-4)	210
Figure 4.23 Comparison of average flight height-time history in air-blast test (AT), buried in silica sand bed test (ST), and buried in in- situ residual soil test (RST)	212
Figure 4.24 Total energy transfer comparison of blast tests carried out in the air, silica sand and residual test setups	213
Figure 4.25 Initial velocity comparison of blast tests carried out in the air, silica sand and residual test setups	214
Figure 4.26 Average relative plate acceleration time history at 80 mm from centre of target plate for air-blast test (AT).	216
Figure 4.27 Average relative plate acceleration time history at 80 mm from centre of target plate for detonation in silica sand test (ST).	217
Figure 4.28 Average relative plate acceleration time history at 80 mm from centre of target plate for detonation in residual soil test (RST)	218
Figure 4.29 Chronology of events in detonation in silica sand test	219
Figure 4.30 Average plate velocity in air-blast test, buried in silica sand test, and buried in residual in-situ test.	220
Figure 4.31 Estimation of plate velocity increment in air-blast test (ST- Test 5) due to impact of ejecta.	223
Figure 4.32 Estimation of plate velocity increment in in-situ residual soil (RST-Test 2) due to the impact of ejecta	223
Figure 4.33 Estimation of plate velocity increment in in-situ residual soil (RST-Test 4) due to the impact of ejecta	224
Figure 4.34 Post-test apparent crater formation observed on silica sand- bed	226
Figure 4.35 Post-test apparent craters profile in silica sand-bed	227
Figure 4.36 Post-test crater formation with fall-back filling up the cavity observed on in-situ Bentong soil	229

Figure 4.37 Post-test true crater after fall-backs were removed from the cavity observed on in-situ Bentong soil	
Figure 4.38 Post-test true craters profile in in-situ Bentong soil	
Figure 4.39 (a) – (d) Illustration of detonation phase in silica sand bed based on observation of post-tests true crater profiles	233
Figure 4.40 Effect on target plate at the early phase of detonation in silica sand-bed	234
Figure 4.41 Clouds of ejecta surrounding the test apparatus/jig at the instant between Phase 2 and 3	236
Figure 4.42 More ejecta spreading out as test apparatus/jig translated upwards.	236
Figure 4.43 (a) – (d) Illustration of detonation phase in in-situ residual soil based on observation of post-tests true crater profiles	239

LIST OF ABBREVIATIONS

AEP	-	Allied Engineering Publication
AN	-	Ammonium Nitrate
AP	-	Anti-Personnel
APC	-	Armoured Personnel Carrier
APM	-	Anti-Personnel Mines
ASTM	-	American Society for Testing and Materials
AT	-	Anti-Tank
AT	-	Air-Blast Test
AV	-	Anti-Vehicles
AVM	-	Anti-Vehicles Mines
CFAS	-	Concrete Fine Aggregate Sand
CSIR	-	Council for Scientific and Industrial Research, South Africa
DAQ	-	Data Acquisition System
DIC	-	Digital Image Correlation
DOB	-	Depth of Burial
DRDC	-	Defence Research and Development Canada
ERDC	-	US Army Engineering Research and Development Centre
ERW	-	Explosive Remnants of War
FAA	-	Free Accelerated Approach
FPA	-	Fixed Plate Approach
HE	-	High Explosive
HMAV	-	High Mobility Armoured Vehicles
HPB	-	Hopkinson Pressure Bar
IED	-	Improvised Explosive Devices
IFOR	-	Implementation Force (A NATO-led multinational force)
IHL	-	International Humanitarian Law
IMD	-	Impulse Measurement Device
LAV	-	Light Armoured Vehicles
LVDT	-	Linear Variable Differential Transformer
MALBATT	-	Malaysia Battalion

MOTAPM	-	Mines Other Than Anti-Personnel Mines
MRAP	-	Mine-Resistance Ambush Protected
NATO	-	The North Atlantic Treaty Organisation
NEC	-	Net Explosive Content
PETN	-	Pentaerythritol Tetranitrate
PPE	-	Personnel Protective Equipment
RDX	-	Royal Demolition Explosive
RHA	-	Rolled Homogeneous Armour
RMS	-	Root Mean Square
RSA-MIL-ST	D -	South Africa Military Standards
RST	-	Buried in Residual Soil Blast Test
SIIMA	-	Scientifically Instrumented Impulse Measuring Apparatus
SOD	-	Stand-off Distance
ST	-	Buried in Silica Sand Blast Test
STANAG	-	NATO Standardization Agreement
TNT	-	Trinitrotoluene
UFC	-	Unified Facilities Criteria
UN	-	United Nations
UNOSOM	-	United Nations Operation in Somalia
UPNM	-	Universiti Pertahanan Nasional Malaysia
VIMF	-	Vertical Impulse Measurement Facility
VLIP	-	Vertical Launched Impulse Plate
VOD	-	Velocity of Detonation