AGEING AND DISSOLVED GAS ASSESSMENTS OF RICE BRAN OIL AND PALM OIL FOR POWER TRANSFORMER APPLICATION

MASLINA BINTI MOHD ARIFFIN

DOCTOR OF PHILOSOPHY (ELECTRICAL AND ELECTRONIC ENGINEERING)

NATIONAL DEFENCE UNIVERSITY OF MALAYSIA

2023

AGEING AND DISSOLVED GAS ASSESSMENTS OF RICE BRAN OIL AND

PALM OIL FOR POWER TRANSFORMER APPLICATION

MASLINA BINTI MOHD ARIFFIN

Thesis submitted to Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfilment of the requirements for the Degree of Doctor of Philosophy (Electrical and Electronic Engineering)

ABSTRACT

Natural ester insulating oils (NEO) have high fire points and excellent biodegradable characteristics. As a result, there is an increasing demand for NEO as transformer insulating oils. Among the promising NEOs are Palm Oil (PO) and Rice Bran Oil (RBO). Since the failure of in-service transformers could be costly, it is essential to understand the oil characteristics; this can be carried out through accelerated thermal ageing study. The ageing characteristics of Mineral oil (MO) knowledge is well established as it has been researched extensively. On the other hand, the ageing studies on NEOs are currently ongoing. According to the findings of these studies, the ageing characteristics and compositions of the NEO were slightly different compared to conventional MO. Thus, there are differences in the variety and proportion of gas production during ageing and fault conditions especially PO and RBO. In this thesis, the ageing behaviour of presence and absence of Kraft paper insulation in MO, PO, and RBO and as well as DGA were investigated. All physicochemical, mechanical, dielectric, and electrical properties were measured at different ageing times of 2, 30, 90, and 180 days and temperatures of 90°C, 110°C, and 130°C. For DGA study, the simulated thermal fault and electrical fault were studied, and the sample of gasses produced due to the faults were taken and analysed. Based on the results, the moisture content in RBO impregnated paper is lower than in MO, which slower the paper ageing in RBO. Moisture content in oil, vegetable-based oils have higher values because they can absorb more moisture from the paper by the effect of hydrolysis. The acid value of PO and RBO are bigger than mineral oil because the triglyceride molecule in the vegetable oil is easy to hydrolyse to produce a large amount of high molecular acid. Relative permittivity and dielectric dissipation factor (DDF) for PO and RBO were higher (1.59 and 2.02) compared to the MO. The higher DDF value of PO and RBO is due to the molecular structure which has a slightly more polar character compared to MO. The RBO has the highest resistivity compared to PO and MO and this is reflected well with the result of the AC breakdown voltages. For DGA study, it could be identified that the main fault gases of thermal fault for PO and RBO are CH₄, C₂H₄, C₂H₆, H₂ and C₂H₆. The DGA analysis for both faults for NEO might be inaccurate due to different interpretation. Therefore, for PO and RBO, the DGA analysis needs further improvement before it can be used as transformer oil.

ABSTRAK

Cecair penebat minyak sayuran mempunyai titik kebakaran yang tinggi dan ciri terbiodegradasi yang sangat baik. Oleh itu, terdapat peningkatan permintaan untuk NEO sebagai minyak penebat pengubah. Antara NEO yang berpotensi adalah minyak sawit (PO) dan minyak dedak padi (RBO). Memandangkan kos kerosakan pengubah adalah sangat mahal, adalah penting untuk memahami ciri-ciri minyak penebat baru melalui kajian penuaan haba. Ciri-ciri penuaan untuk minyak mineral (MO) sudah banyak dikaji secara meluas. Sebaliknya, kajian penuaan untuk NEO kini sedang dijalankan. Menurut penemuan kajian ini, ciri penuaan dan komposisi NEO adalah sedikit berbeza berbanding MO. Selain itu, terdapat perbezaan kepelbagaian dalam pengeluaran gas semasa penuaan dan keadaan kerosakan terutama PO dan RBO. Dalam tesis ini, tingkah laku penuaan dan ketiadaan penebat kertas Kraft dalam MO, PO, RBO dan DGA telah dikaji. Semua sifat fiziokimia, mekanikal, dielektrik dan elektrik diukur pada masa penuaan yang berbeza iaitu 2, 30, 90 dan 180 hari serta suhu 90°C. 110°C dan 130°C. Untuk kajian DGA, simulasi kerosakan haba dan kerosakan elektrik telah dibuat, dan sampel gas yang dihasilkan akibat kerosakan telah diambil dan dianalisis. Berdasarkan keputusan, kandungan lembapan dalam RBO dengan kertas Kraft adalah rendah dari MO, menyebabkan kertas menua dengan lebih lambat. Mengenai kandungan lembapan dalam minyak yang berasakan sayuran, ia mempunyai nilai lembapan yang lebih tinggi kerana kesan hidrolisis. Nilai asid PO dan RBO lebih tinggi daripada MO kerana molekul trigliserida dalam minyak sayuran mudah dihidrolisis untuk menghasilkan sejumlah besar asid molekul tinggi. Kepelbagaian relatif dan faktor pelesapan dielektrik (DDF) untuk PO dan RBO adalah tinggi (1.59 and 2.02) berbanding MO. DDF yang tinggi dalam PO dan RBO disebabkan oleh struktur molekul yang mempunyai watak polar yang sedikit berbanding MO. RBO mempunyai kerintangan tertinggi berbanding PO dan MO dan ini ditunjukkan dengan baik dengan hasil voltan kerosakan AC. Bagi kajian DGA, dapat dikenalpasti bahawa kandungan gas kerosakan bagi PO dan RBO ialah CH₄, C₂H₄, C₂H₂, H₂ dan C₂H₆. Analisis DGA untuk kedua-dua kesalahan untuk NEO mungkin tidak tepat kerana tafsiran yang berbeza. Oleh itu, untuk PO dan RBO, analisis DGA memerlukan penambahbaikan lagi sebelum boleh digunakan sebagai minyak pengubah.

ACKNOWLEDGEMENTS

All praises due to **Allah S.W.T.**, Lord of universe, The Most Merciful and Gracious. Prayer for peace and prosperity for the **prophet Nabi Muhammad S.A.W.**, his companion and his beloved friends.

Alhamdulillah, here I would like to express the deepest appreciation to my supervisor **Prof. Dr. Mohd Taufiq bin Ishak** for his careful guidance, patience and advice which invaluable direction during the course of this project. Without his supervision and constant help this dissertation would not have been possible.

Furthermore, special thanks and sincere appreciation to my beloved husband, **Mohamad Hazrul Shah bin Mohamad Hussin**, parents, **Mohd Ariffin bin Hussin** and **Siti Rohani binti Bakar** and other family for their support, prayer, encouragement and patience. Without them, none of this would have been possible. Not to forget, a million of gratitude to all my friends whom been involved while making this project until its success completion.

Finally, I would like to thank the **National Defence University of Malaysia** for giving the opportunity to pursue my Doctor of Philosophy's program.

APPROVAL

The Examination Committee has met on the **17th November 2022** to conduct the final examination of **MASLINA BINTI MOHD ARIFFIN** on her PhD thesis entitled **'Ageing and Dissolved Gas Assessments of Rice Bran Oil and Palm oil for Power Transformer Application'**.

The committee recommends that the student be awarded the Doctor of Philosophy (Electrical and Electronic Engineering).

Members of the Examination Committee were as follows.

Assoc. Prof. Dr. Mohd Taufik Bin Jusoh@ Tajudin

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Chairman)

Dr. Asnor Mazuan Bin Dato' Haji Ishak

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Prof. Ir. Ts. Dr. Muzamir Bin Isa

Faculty of Electrical Engineering Technology Universiti Malaysia Perlis (External Examiner)

Assoc. Prof. Ir. Dr. Rahisham Bin Abdul Rahman

Faculty of Electrical & Electronic Engineering Universiti Tun Hussien Onn Malaysia (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia and has been accepted as fulfilment of the requirements for the degree of **Doctor of Philosophy** (**Electrical and Electronic Engineering**). The members of the Supervisory Committee were as follows.

Prof. Dr. Mohd Taufiq bin Ishak

Faculty of Engineering Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Prof. Ir. Dr. Mohd Zainal Abidin bin Ab Kadir Faculty of Engineering Universiti Putra Malaysia (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Student's full name	: MASLINA BINTI MOHD ARIFFIN
Date of birth	: 29 TH NOVEMBER 1986
Title	: AGEING AND DISSOLVED GAS ASSESSMENTS OF RICE BRAN OIL AND PALM OIL FOR POWER TRANSFORMER APPLICATION
Academic session	: 2014/ 2022

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

I further declare that this thesis is classified as

CONFIDENTIAL	(Contains confidential information under the official Secret Act 1972) *
RESTRICTED	(Contains restricted information as specified by the organization where research was done) *
OPEN ACCESS	I agree that my thesis to be published as online open access (full text).

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows:

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia.
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

**Signature of Supervisor/ Dean of CGS/ Chief Librarian

IC/ Passport No.

Date:

**Name of Supervisor/ Dean of CGS/ Chief Librarian

Date:

* If the thesis is CONFIDENTIAL or RESTRICTED, please attach the letter from the organization with period and reasons for confidentiality and restriction. ** Witness

TABLE OF CONTENTS

TITLE

PAGE

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	iv
APPROVAL	v
APPROVAL	vi
DECLARATION OF THESIS	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii
LIST OF APPENDICES	xviii

CHAPTER

1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statements	6
	1.3 Research Objective and Scope	8
	1.4 Major Contribution	10
	1.5 Thesis Summary	10
2	LITERATURE REVIEW	13
	2.1 Introduction	13
	2.2 Transformer Working Principle and Application	14
	2.3 Insulation in Transformer	16
	2.3.1 Transformer Oil	16
	2.3.1.1 Mineral Insulating oil	18
	2.3.1.2 Natural Ester oil	19
	2.3.1.2.1 Palm oil	20
	2.3.1.2.2 Rice Bran oil	21
	2.3.2 Cellulose Insulation	23
	2.3.2.1 Electrical Grade-Kraft paper	24
	2.3.2.2 Paper Ageing Mechanism	25
	2.4 Ageing Effects on Physicochemical Properties	28
	2.4.1 Moisture of Oil and Paper	28
	2.4.2 Acidity	29
	2.4.3 Dynamic Viscosity	30
	2.5 Ageing Effects on Mechanical Properties	31
	2.5.1 Tensile Strength	31
	2.6 Ageing Effect on Dielectric properties	32
	2.6.1 Relative permittivity	32
	2.6.2 Dielectric Dissipation Factor	33
	2.6.3 Resistivity	34
	2.7 Ageing Effects on Electrical Properties	35

2.7.1 AC breakdown voltage Performance	35
2.8 Dissolved Gas Analysis	36
2.8.1 Gases in Conventional Transformer Oil	36
2.8.2 Thermal Faults	37
2.8.3 Electrical Faults	37
2.8.4 Interpretation of Dissolved gas analysis	38
2.8.5 Duval Triangle and Pentagon method	38
2.8.6 Doernenburg Ratio method	40
2.8.7 Rogers Ratio and IEC method	41
2.9 Summary	43
METHODOLOGY	44
3.1 Introductions	44
3.2 Sample description	46
3.2.1 Pre-processing of the oil	48
3.2.2 Pre-processing of Kraft paper	49
3.2.3 Kraft paper impregnation with oil	50
3.2.4 Ageing of oil and paper	51
3.3 Parameter of oil testing	52
3.3.1 Physicochemical properties	52
3.3.2.1 Moisture in oil and Kraft paper	53
3.3.2.2 Acidity	56
3.3.2.3 Dynamic Viscosity	58
3.3.2 Mechanical properties	60
3.3.2.1 Tensile strength	60 62
3.3.3 Dielectric properties3.3.4 Electrical properties –AC breakdown voltage test	66
3.3.5 Dissolved Gas Analysis (DGA)	69
3.3.5.1 Pre-processing of oil for Electrical Fault	69
and Thermal Fault	07
3.3.5.1.1 Electrical Fault Experiment	70
3.3.5.1.2 Thermal Fault Experiment	71
3.3.5.2 Testing with Gas Extraction method	72
3.3.5.2.1 Extraction result data processing	74
3.4 Summary	75
RESULT AND ANALYSIS	76
4.1 Introduction	76
4.2 Physicochemical Properties	77
4.2.1 Moisture in Oil	77
4.2.1.1 Moisture in Oil with the Presence of Kraft	79
Paper 4.2.1.2 Moisture in Oil without the Presence of	82
Kraft paper	
4.2.2 Moisture in Kraft paper	85
4.2.3 Acidity	87
4.2.3.1 TAN with the presence of Kraft paper	89
4.2.3.2 TAN without the presence of Kraft paper	90
4.2.4 Dynamic Viscosity	90
4.2.4.1 Dynamic Viscosity with the presence of	92

3

4

		141 152 176 177
	5.2 Future Research	140
-	5.1 Conclusions	137
5	CONCLUSION AND RECOMMEDATION	137
	4.7 Summary	134
	4.6.3 Diagnostic Results of DGA	130
	4.6.2.4 IEC Ratio Method Analysis	130
	4.6.2.3 Rogers Ratio Method Analysis	129
	4.6.2.2 Doernenburg Ratio Method Analysis	128
	4.6.2.1 Duvai Thangle and Pentagon Method Analysis	120
	4.6.2.1 Duval Triangle and Pentagon Method	125
	4.6.1.4 IEC Ratio Method Analysis 4.6.2 Breakdown Voltage Fault Gas Generation	124
	4.6.1.3 Rogers Ratio Method Analysis 4.6.1.4 IEC Ratio Method Analysis	123 124
	4.6.1.2 Doernenburg Ratio Method Analysis	122
	4.6.1.1 Duval Triangle and Pentagon Method Analysis	118
	4.6.1 Thermal Fault Gas Generation	117
	4.6 Dissolved Gas Analysis	117
	4.5.2 AC Breakdown Voltage Effect of oil without the Presence of Kraft Paper	115
	Presence of Kraft Paper	113
	4.5 Electrical Properties 4.5.1 AC Breakdown Voltage Effect of Oil with the	113
	4.4.3.2 Resistivity without the Presence of Kraft Paper4.5 Electrical Properties	110 111
	Paper	
	4.4.3 Resistivity 4.4.3.1 Resistivity with the Presence of Kraft	106 108
	presence of Kraft Paper	
	presence of Kraft paper 4.4.2.2 Dielectric Dissipation Factor without the	105
	4.4.2.1 Dielectric Dissipation Factor with the	103
	4.4.2 Dielectric Dissipation Factor	102
	4.4.1.2 Relative Permittivity without the presence of Kraft Paper	100
	4.4.1.1 Relative permittivity with the presence of Kraft Paper	98
	4.4.1 Relative Permittivity	96
	4.4 Dielectric Properties	96
	4.3.1 Tensile Strength	93
	4.3 Mechanical Properties	93
	of Kraft Paper	
	Kraft paper 4.2.4.2 Dynamic Viscosity without the presence	92

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Previous ageing experiments for paper ageing mechanism	
2.2	Types of faults that can be used as reference s when using the Duval Triangle and Duval Pentagon 1 and 2 methods	
2.3	Gas concentration ratio limit to determine faults according to Deornenburg Ratio method	41
2.4	Gas concentration ratio limit to determine faults according to Rogers Ratio method	42
2.5	Gas concentration ratio limit to determine faults according to IEC Ratio method	42
3.1	Detail components in sample of oil	46
3.2	Fatty acid components	47
3.3	Final moisture content	49
3.4	Basic properties of paper	50
3.5	Summarize of important parameter for testing all samples	52
3.6	Detail information on BAUR equipment	67
4.1	Moisture in oil with presence of Kraft paper for MO, PO and BO	80
4.2	Moisture in oil without presence of Kraft paper for MO, PO and RBO	83
4.3	Tensile strength retention (%) for all of the oil samples	94
4.4	Relative permittivity, ϵ_r with the presence of Kraft paper at 90°C, 110°C and 130°C	99
4.5	Relative permittivity ε_r without the presence of Kraft paper at 90°C, 110°C and 130°C	101

4.6	Dissipation Factor, Tan δ with presence of Kraft paper at all temperature	104
4.7	Dissipation Factor, Tan δ without presence of Kraft paper at all temperature	105
4.8	Resistivity, $T\Omega$ with presence of Kraft paper at all temperature	109
4.9	Resistivity, $T\Omega$ without presence of Kraft paper at all temperature	110
4.10	Average AC breakdown voltage, kV effect of oil with presence of Kraft paper	114
4.11	Average AC breakdown voltage, kV effect of oil without presence of Kraft paper	116
4.12	Concentration of gases in oil	118
4.13	References acronym for the Duval Triangle and Duval Pentagon 1 and 2 methods	119
4.14	Gas concentration ratio of mineral oil, palm oil and rice bran oil based on Doernenburg Ratio method	123
4.15	Gas concentration ratio of mineral oil, palm oil and rice bran oil based on Rogers Ratio method	124
4.16	Gas concentration ratio of mineral oil, palm oil and rice bran oil based on IEC Ratio method	124
4.17	Concentration of gases in oil	125
4.18	Gas concentration ratio of mineral oil, palm oil and rice bran oil based on Doernenburg Ratio method	129
4.19	Gas concentration ratio of mineral oil, palm oil and rice bran oil based on Rogers Ratio method	129
4.20	Gas concentration ratio of mineral oil, palm oil and rice bran oil based on IEC Ratio Method	130
4.21	Summarise the diagnostic tools found in IEEE guide	131
4.22	Results of dissolved gas analysis by using different methods	133

LIST OF FIGURES

FIGURES	TITLE	PAGE
2.1	Molecular structures of three main groups of hydrocarbon molecules in mineral insulating oil (a) Paraffinic, (b) Naphthenic, (c) Aromatic	19
2.2	Cross section of palm nut	20
2.3	Rice kernel structure	22
2.4	Factors that could influence oil and paper ageing in the transformer	26
2.5	Trend of acidity with age	30
2.6	Effect of different ageing mechanisms on the ageing rate of paper (arrow indicates the increase in the reaction rate due to the increase in water content)	32
2.7	Comparison of DDF of natural ester oils	34
2.8	Conventinal Duval Triangle, where DT represents combination of thermal and electrical discharge faults	40
2.9	Representation of faults areas in Duval Pentagon 1 and Duval Pentagon 2	40
3.1	The general flowchart comprising the samples and experimental set up procedures involved in this study	45
3.2	Flow of pre-processing of oil	48
3.3	Flow of pre-processing of Kraft paper	49
3.4	Flow of Kraft paper impregnation with oil	50
3.5	Sample of (a) Ageing of oil with presence of Kraft paper (b) Ageing of oil without presence of Kraft paper	51
3.6	Coulometric Karl Fisher Titration	54
3.7	Flows of moisture in oil test	56
3.8	Digital Burette	57
3.9	Flows of acidity test	58

3.10	Flows of dynamic viscosity testing	59
3.11	Brookfield R/S Plus Rheometer	60
3.12	Universal Testing Machine (UTM) Instron 5569A	61
3.13	Flows of tensile strength testing	62
3.14	Automatic ADTR-2K Plus	63
3.15	The test cell for measurements on liquids proposed by IEC 60247	64
3.16	Sample of result from Automatic ADTR-2K Plus	64
3.17	Flows of dielectric properties test	65
3.18	BAUR Fully Automatic Insulating Tester DTA100C	66
3.19	Copper spherical electrodes with a diameter of 12.5 mm	67
3.20	Flows of the AC breakdown voltage test	68
3.21	Pre-processing of oil for electrical and thermal fault	69
3.22	Electrical faults experiment	71
3.23	Thermal faults experiment	71
3.24	Extraction of gas from insulating oil	73
3.25	Gas extraction data processing from insulating oils	74
4.1	Flowchart of specific qualities measured in the research	77
4.2	Moisture in oil for (a) 90°C (b) 110°C 130°C at all time durations with and without presence of Kraft paper	79
4.3	Moisture in paper for (a) 90°C (b) 110°C (c) 130°C at all time durations	86
4.4	TAN for all sample of oils for (a) 90° C (b) 110° C (c) 130° C at all time durations	88
4.5	Dynamic viscosity for all samples at (a) 90°C (b) 110°C (c) 130°C at all time durations	91
4.6	Tensile strength retention (%) at (a) 90°C (b) 110°C (c) 130°C for all samples of oils	95

4.7	Relative Permittivity at (a) 90°C (b) 110°C (c) 130°C at 9 all time durations	
4.8	Dissipation Factor, Tan δ at (a) 90°C (b) 110°C (c) 130°C at all time durations	103
4.9	Resistivity, T Ω cm at (a) 90°C (b) 110°C (c) 130°C at all time durations	108
4.10	AC Breakdown Voltage, kV at (a) 90°C (b) 110°C (c) 130°C at all time durations	113
4.11	Duval Triangle formed by the three axes that corresponds to the relative proportion of CH ₄ , C ₂ H ₂ and C ₂ H ₄ gases for thermal fault detection: (a) mineral oil, (b) palm oil and (c) rice bran oil	120
4.12	The irregular polygon formed by five relative proportion of H_2 , C_2H_6 , CH_4 , C_2H_4 , C_2H_2 and gases for thermal fault detection: (a) Mineral oil, (b) Palm oil (c) Rice Bran oil	121
4.13	Duval Triangle formed by the three axes that corresponds to the relative proportion of CH_4 , C_2H_2 and C_2H_4 gases for breakdown voltage fault detection: (a) mineral oil, (b) palm oil and (c) rice bran oil	127
4.14	The irregular polygon formed by five relative proportion of H_2 , C_2H_6 , CH_4 , C_2H_4 , C_2H_2 and gases for breakdown voltage fault gas detection: (a) Mineral oil, (b) Palm oil (c) Rice Bran oil	128

LIST OF ABBREVIATIONS

AC	-	Alternating current
ASTM	-	American Society for Testing and Materials
BDV	-	Breakdown voltage
CH ₄	-	methane
CO_2	-	carbon dioxide
СО	-	carbon monoxide
C_2H_4	-	ethylene
C_2H_6	-	ethane
C_2H_2	-	acetylene
DDF	-	Dielectric dissipation factor
DGA	-	Dissolved gas analysis
DP	-	Degree of depolymerisation
DPg1	-	Duval pentagon 1
DPg2	-	Duval pentagon 2
H_2	-	hydrogen
IEC	-	International Electrotechnical Commission
IEEE	-	Institute of Electrical and Electronic Engineers
IFT	-	Interfacial Tension
NEO	-	Natural Ester oil
mc	-	Moisture content
MPa	-	Megapascal pressure unit
MO	-	Mineral oil
PO	-	Palm oil
RBO	-	Rice Bran oil
RP	-	Relative permittivity
Std	-	standard
TS	-	Tensile Strength

LIST OF SYMBOLS

°C	-	Celsius
δ	-	Delta
Ω	-	ohm
v/m	-	volt/meter
A/m^2	-	ampere/square meter
g	-	gram
mg	-	milligram
cSt	-	Centistokes
mm	-	millimetre
kN/m	-	kilonewton/meter
kN	-	kilonewton
dc	-	direct current
kV/m	-	kilovolt/meter
Hz	-	hertz
ppm	-	parts per million

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A		
A.1	Data Collection on AC breakdown voltage with presence of Kraft paper at 90°C	153
A.2	Data Collection on AC breakdown voltage with presence of Kraft paper at 110°C	156
A.3	Data Collection on AC breakdown voltage with presence of Kraft paper at 130°C	159
APPENDIX B		
B.1	Data Collection on AC breakdown voltage without presence of Kraft paper at 90°C	162
B.2	Data Collection on AC breakdown voltage without presence of Kraft paper at 110°C	165
B.3	Data Collection on AC breakdown voltage without presence of Kraft paper at 130°C	168
APPENDIX C		
C.1 C.2	Thermal Fault Gas Generation Calculation Breakdown Voltage Fault Gas Generation Calculation	171 174

CHAPTER 1

INTRODUCTION

1.1 Background

Transformers, and particularly power transformers, are one of the most important assets in the system that convert power from one voltage level to another in electrical power system[1], [2]. During operation, power transformers are subjected to a variety of stresses, including thermal, electrical, mechanical, and chemical, all of which contribute to the deterioration of the insulation system [3]. The efficiency of a power transformer is mainly determined by the performance of its insulation materials, which is the most important component contained within the transformer [4]. Therefore, continuous study on how to maintain the performance of the insulation system is required. Any kind of failure related to the insulation system, including the ageing related process is crucial and needs to be focused on because it involves a long-term operation process. Insulating oil also known as transformer oil and Kraft paper are the two primary components that comprise a transformer's insulation system [4]. Due to the fact that transformer oil has a higher dielectric strength than air, their primary purpose is to provide an electrical insulation. The secondary purpose of transformer oil is to function as a coolant or dissipate heat within the transformer. It is because, when flux leakage/eddy current and winding (I²R) losses occur in transformers, there will be a loss of energy in the form of windings and cores. This will experience an increase in temperature as a direct consequence of this. The heat will be absorbed by the insulation oil, and it will be transferred to the cooled exterior surfaces. The provision of diagnostic information regarding the operational health of the transformer and the lifetime of the transformer is the third purpose of transformer oil [4]–[6].

The main insulation oil in industrial power system since the 1990s is mineral oil (MO) [7]. MO continues to serve as a major type of insulating fluid in electrical equipment until now. Insulating oils derived from minerals have excellent dielectric and cooling properties, which is the primary reason for their market dominance in terms of consumption on a global scale [4], [8], [9]. However, MO is non-biodegradable and causes serious spills occurs during incidents such as transformer explosion [10], [11]. In addition, MO have disadvantages which is a flammable liquid that has a flash point and fire point of 170°C (high temperature) and transformer fires are an unavoidably risk. However, due to the environmental aspects in the future, the concern of fire safety performance of MO starts to be limited [4], [8], [9].

In recent years, NEO such as rapeseed, sunflower, olive, castor, palm and coconut have been considered as one of the alternatives to replace the MO [12]–[14]. Furthermore, NEO have excellent thermophysical and improved dielectric properties both of which contribute to increasing the motivations for using NEO as alternative transformer oil. In order for these vegetable oils to be considered a viable replacement for MO, they will first need to meet the requirements of being risk-free, cost-effective, and able to maintain a high level of electrical properties over the course of the transformer's lifetime.

Recently, extensive works were carried out to investigate the suitability of vegetable oils as the alternative to MO [12], [13], [15]–[23]. The studies evaluated dielectric properties, physical and chemical performances under different conditions and ageing properties. Although some poor features of esters limit their usage, e.g low oxidation stability for vegetable oils, they have been used worldwide for many years in either small or medium distribution transformer up to 66kV [24], [25].

In 2006 it was reported by Martins [26] that two Brazilian Utilities, CELESC and ELETRONORTE, were experimenting with power transformers filled with vegetable-based oil, Environtemp FR3. Environtemp FR3 is a biodegradable natural ester and it is derived from seed oil with additives to improve performance. CELESC was using FR3 in a 138kV 30MVA transformer and two 138kV 40MVA substation transformers. ELETRONORTE has revised its specification to use FR3 in all transformers and reactors rated up to 138kV and have recently ordered a 242kV shunt reactor from ALSTOM Grid (previously AREVA T & D).

One of the most considered VO to be applied as transformer oil is Palm-based oil(PO). Recently, a number of studies have been conducted, on PO, comprising various electrical, physical and chemical properties [12], [15], [30], [36], [45], [55], [66], [70]. The findings indicated that PO has a the potential to serve as an alternative transformer oil due to the fact that its AC breakdown strength and lightning impulse strength were comparable to MO [4], [6], [9], [19], [22], [27]–[31]

Rice bran oil (RBO) is yet another variety of VO that has demonstrated strong performance. In 2016, S. Senthil Kumar reported RBO for the capability to be utilised as an alternative transformer oil. Studies on RBO especially on physical, chemical, and electrical properties are very limited number. The study showed that the AC breakdown voltage and lightning impulse breakdown voltage of RBO has a comparable performance to another natural esters [32]–[34]. According to the findings, RBO possesses better insulating properties in comparison to other VO.

The performance of insulation oil is gradually deteriorating in the long-term operation and may lead to failures of the transformer. This deterioration is influenced by the internal electrical, thermal, mechanical vibration, moisture, oxygen, and other factors of the transformer. Among those factors, thermal ageing caused more than half of the total failures in transformer which makes it the main cause of oil paper insulation degradation. The influences of thermal ageing on oil's electrical and paper's mechanical properties become the concerns of ageing diagnosis and residual lifetime predictions for transformers. Thus, it is important to determine the ageing status of transformers by monitoring the condition of the oil and paper. Dissolved gas analysis (DGA) is the study of dissolved gases in transformer oil. Whenever a transformer undergoes abnormal thermal and electrical stresses, certain gases are produced due to the decomposition of the transformer oil. When the fault is major, the production of decomposed gases is significant. However, when abnormal thermal and electrical stresses are not significantly high the gasses due to decomposition of transformer insulating oil will get enough time to dissolve in the oil.

PO and RBO have different compositions from the conventional mineral insulating oil. PO and RBO consists of hundreds of triglycerides, while mineral oils are mixtures of alkane, cyclones, and aromatic hydrocarbons containing carbon and hydrogen linked together by single and double bonds. In addition, different types of vegetable insulating oils are also composed of different kinds and proportions of triglyceride molecules. Thus, there are differences in the variety and proportion of gas production among different types of insulating oils especially PO and RBO. The percentage of different gas produced by both oils can be measure using a dissolved gas analysis (DGA).

Since the physicochemical properties of PO and RBO are distinct from those of MO, both the design and production processes of power transformers may be impacted as a consequence. Thus, a complete understanding of the ageing performances of vegetable oils and their impact on transformer design and operation is required.

Therefore, in this thesis, a detailed study of ageing properties of PO and RBO was carried out through the study of physicochemical, mechanical, and electrical

properties in order to comply the industrial standard. Besides that, an assessment of dissolved gas analysis especially for thermal faults and electrical breakdown is also observed. Before these VO can be utilized in power transformers, it is necessary to ascertain whether the limitation that has been specified for MO is also applicable to PO and RBO.

1.2 Problem Statement

Since the failure of in-service transformers could be costly, it is essential to understand the oil characteristics; this can be carried out through accelerated thermal ageing study. The ageing characteristics of MO knowledge is well established as it has been research extensively [35]–[37]. On the other hand, the ageing studies on NEO are currently ongoing [19]. According to the finding of these studies, the ageing characteristics of the NEO were different compared to traditional MO. It was discovered that insulation paper could benefit from the protection provided by NEO during the ageing process [19]. Furthermore, it was also implied hydrolytic protection and water-scavenging mechanisms that are present in NEO might delayed the ageing process of insulation paper [19].

Other research showed that most of NEO electrical properties are not significantly impacted by the process of ageing [19]. In the presence of copper, iron, and insulation paper, there was a clear reduction in the resistivity of NEO can be observed, according to certain studies. Besides, the dielectric dissipation factor of NEO may increase with time due to the presence of moisture in insulation paper [38]. Physicochemical properties of NEO may also be affected by aging process [1], [8],