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ABSTRACT 
 

A metal can be known as a superconductive material throughout their transition 

temperature (Tc) determination. This is done by the macroscopic 

thermo/electrodynamic experiment. Upon quantum, electronic band theory cannot tell 

if the material is a superconductor. This is because superconducting band gap (∆𝐸𝑠𝑐) 

of the conventional superconductor is too small. However, this might not true for the 

higher Tc, recently discovered namely Fe-based superconductor (FeBS). This new kind 

of superconductor is labelled to have an unconventional superconductivity (SC). This 

is because its SC mechanism could no longer explain the conventional phonon 

mediated SC. Conventionally, spins (Fe) destroyed phonon SC interaction. Fairly, role 

of spins played for SC is not yet fully understood. Thereby, it is a chance that the FeBS 

has other kinds of electronic feature related to its SC mechanism. The aim of this 

research is to verify electronic features contributed to Fe-SC. This is done by 

calculating various electronic phase properties of BaFe2-xNixAs2 using Density 

Functional Theory (DFT). According to their Tc determination experiment, BaFe2-

xNixAs2 with x=0, 1 and 2 is the parent FeBS, a non-superconductor (NSC) and the non-

Fe; Ni-based superconductor (NiBS), respectively. It is featured on their calculated 

band structures that the parent FeBS has paired  ∆𝐸𝑠𝑐 while the NiBS has the inter-band 

pockets of Charge Density Wave (CDW) which is responsible for the non-Fe SC 

whereby the NSC has none of those. Referring to the electronic phase diagram data, 

BaFe2-xNixAs2 with x=0, 0.125 and 0.25 is representing phase before, during and after 

the Fe-SC. It is concluded from the band structures calculation that the FeBS (x=0.125) 

is not only depicted an obvious paired ∆𝐸𝑠𝑐 but must accompanied by intra-band Spin 

Density Wave (SDW) nesting pockets to have the spin mediated SC. Also, the SC 

ended (x=0.25) when it is only intra-band SDW. This proved that spins played role for 

SC when the atomic Fe distances, its magnetic moment and ordering are precisely 

favored by the SC interaction. Moreover, direct comparison of the FeBS versus the NiBS 

is done to understand their mechanism in enhancing SC. Pairing SC mechanism of both 

superconductors is depicted in their momentum and real space. It is determined from their 

calculated electronic properties and charge distribution, respectively. This is to 

demonstrate electrons that responding to SC interaction; super-electrons. It is found that 

their super-electrons behaved differently. This might be a clue why FeBS (Fe-SC) has 

higher Tc than the NiBS (non-Fe SC). Overall, the quantum calculation in this first-

principles study provided insight for super-electrons behavior. Henceforth, it may 

improve the understanding of unconventional superconductors. 
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ABSTRAK 
 

Logam diketahui boleh bersifat superkonduktif dari pengesahan suhu kritikal mereka. 

Inilah yang dijalankan oleh experimen makroskopik termo/elektrodynamik. Dalam 

kuantum, teori jalur elektronik tidak dapat memberitahu sama ada sesuatu bahan itu 

superkonduktor atau tidak. Ini kerana jarak jalur tenaga superkonduktor biasa adalah 

terlalu kecil. Walaubagaimananpun, ini mugkin tidak lagi betul untuk superkonduktor 

berasas ferum yang baru sahaja ditemui, juga mempunyai suhu kritikal yang lebih 

tinggi. Jenis superkonduktor yang terbaru ini dilabel mempunyai superkonduktiviti 

bukan biasa. Ini kerana mekanism superkonduktivitinya tidak lagi menerangkan 

superkonduktiviti biasa yang dijana oleh fonon. Biasanya, putaran kepunyaan ferum 

akan memusnahkan interaksi superkonduktiviti fonon itu. Jadi adillah, peranan putaran 

dalam superkonduktiviti masih tidak difahami sepenuhnya. Oleh itu, berkemungkinan 

superkonduktor berasas ferum ada ciri elektronik berbeza yang membawa kepada 

superkonduktiviti. Kajian ini adalah untuk mensahihkan ciri elektronik yang 

menyumbang kepada superkonduktiviti dengan ferum. Ini dilakukan dengan mengira 

pelbagai fasa sifat elektronik BaFe2-xNixAs2 menggunakan Teori Fungsi Ketumpatan. 

Berdasarkan kepada mengesahan suhu kritikal mereka, BaFe2-xNixAs2 dengan x=0, 1 

dan 2, masing-masingnya adalah induk superkonduktor berasas ferum, bukan-

superkonduktor dan superkonduktor bukan berasas ferum (superkonduktor berasas 

nikel). Ini telah diketengahkan oleh pengiraan struktur jalur mereka bahawa induk 

superkonduktor berasas ferum ada jarak jalur tenaga berkembar manakala 

superkonduktor berasas nikel mempunyai poket jalur rapat dari ketumpatan gelombang 

cas dan bukan-superkonduktor tiada kedua-duanya. Merujuk kepada data gambar rajah 

fasa elektronik BaFe2-xNixAs2 dengan x=0, 0.125 dan 0.25 adalah mewakili fasa 

sebelum, semasa dan selepas superkonduktiviti dengan ferum. Telah disimpulkan dari 

pengiraan struktur jalur bahawa superkonduktor berasas ferum tidak hanya 

memaparkan jarak jalur tenaga superkonduktor yang jelas bahkan mesti ditemani oleh 

ketumpatan gelombang putaran sebagai syarat agar superkonduktivitinya dijana oleh 

putaran. Juga, fasa superkonduktiviti itu tamat apabila hanya ada jalur antara 

ketumpatan gelombang putaran. Ini membuktikan bahawa putaran memainkan peranan 

untuk menjana superkonduktiviti apabila momen, jarak dan susunan atom ferum 

memihak kepada interaksi superkonduktiviti. Seterusnya, perbandingan terus kepada 

superkonduktor berasas ferum dari superkonduktor berasas nikel telah dilakukan untuk 

memahami mekanism mereka dalam mengeluarkan superkonduktiviti. Mekanism 

berpasangan dalam superkonduktiviti mereka telah ditunjukkan dalam ruangan 

momentum juga ruangan sebenar. Masing-masingnya yang dikenalpasti dari kiraan 

sifat elektronik juga pengedaran cas mereka. Ini adalah demonstrasi elektron-elektron 

yang bertanggungjawab atas interaksi superkonduktiviti; super-elektron. Telah 

difahamkan bahawa super-elektron mereka berkelakuan berbeza. Jadi mungkin inilah 

sebabnya suhu kritikal superkonduktor berasas ferum adalah lebih tinggi dari suhu 

kritikal superkonduktor berasas nikel. Keseluruhannya, kiraan kuantum dalam kajian 

prinsip-utama ini diharapnya akan menyediakan pandangan bernas tentang  super-

elektron. Sehingganya, mengemaskini pemahaman tentang superkonduktor bukan 

biasa. 
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1  

CHAPTER 1 

 

INTRODUCTION 
 

 

1.1 Background of Research 

 

Since the accidentally discovery of superconductivity (SC) in cooled solid 

mercury [1], more and more element and compound materials have been studied at low 

temperature [2–4]. Until now, the progress on finding new superconductor materials 

keeps ascending [5–7]. The bizarre behaviour of a superconductor such as 

supermagnet, pinning vortex, and Johenson jumping has significantly changed the 

understanding of condensed matter system [3, 8-9]. The advance technology offered by 

this fascinating material has improved human life wholly. The fusion reactor, hovering 

vehicle prototype and the most sensitive magnetometer are all thanks to SC [3, 

10-11].  Not to mention, the ‘super’ conducting phenomenon which is conducting 

electricity by zero resistivity lured many researchers to propose the new superconductor 

as the best power generator cable [12].  However, every magnificent has pro and cons. 

SC is a complex state that only happens at certain low temperature which is known as 

transition or critical temperature, Tc [1].  It is a goal to achieve a high Tc, high enough 

to be superconducting in power generator cable without any coolant applied. This is 

motivated by the high cost of stabilizing the SC state [13]. Despite the highest Tc by 

Cuprate group of superconductors, this type of superconductor is brittle ceramic which 

is not easily moulded into wire [14]. Moreover, cuprates are unsuitable for application 
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requiring actual superconducted current because they do not form large, continuous 

superconducting domains, but only clusters of micro-domains within which SC occurs 

[15]. On the other hand, Fe-based superconductor (FeBS) is the first choice candidate 

for superconducting power generator cable due to the physically able to be fabricated 

into wire [16]. This is because FeBSs are poor metal even when they are not 

superconducting [17–19].  However, there is no SC theory established for FeBS yet 

leave alone make it superconducting at the room temperature [20]. Nonetheless, many 

scientific papers have been established since the discovery of FeBS due to its potential 

as a superconducting cable [20]. Most of the papers are to recognize the properties of 

FeBSs especially their parent compound  [21–23].  Among the FeBSs, parent 

compound of 122-type family does not share the Fe atom with the neighbouring unit 

cell summarize the study on Fe in the FeBS is per unit cell [24]. Plus, direct interaction 

of Ni on Fe on the electron-doped BaFe2As2 would tell the role of Fe play in FeAs layer 

in the FeBS [25]. These both are important in order to understand the differentiation 

between Matthias rule obeying of most Bardeen-Cooper-Schrieffer (BCS) 

superconductor and the SC in the magnetic FeBS that is remain unconcluded [20]. 

Nevertheless, simpler structure by FeBSs as compared to Cuprates, does offered better 

enabling to be studied in first-principles approaches [26-27]. Therefore, abundance of 

experimental works has successfully reported and supported by many theoretical works 

[28–31]. Truly, a decade is fairly too soon to conclude any SC theory of vast FeBS 

materials but every study regarding it will bring us one step closer to the understanding 

of the unconventional SC and of course, with lots of study reported, it will help 

researching become less tedious. For example, there are group researchers proposed 

possible SC mechanism for FeBS such as spin density wave (SDW), spin-phonon, ±s-

wave pairing versus d–wave pairing gap [32–35]. 
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In this thesis, first-principles study is done on the SC related properties such as 

phonon and electronic for SC mechanism in BaFe2-xNixAs2 superconductors. 

superconducting BaFe2-xNixAs2 is one of the FeBS. Without Fe (x=2), BaFe2-xNixAs2 

is a Ni-based superconductor (NiBS). Their SC related properties were calculated using 

density functional theory (DFT) with Local Density Approximation (LDA) and 

Generalized Gradient Approximation (GGA) exchange correlation within the 

Cambridge Serial Total Energy Package (CASTEP) computer code. This work is an 

aid to theoretically understand the unconventional SC mechanism in a way to provide 

more insight of establishing a SC theory that involving magnetic element. May the 

theory potentially develop an equation to formulate the higher Tc superconductor if not, 

the room temperature superconductor. Next, make it possible to manufacture the 

electric power generator cable with 100% efficiency.  

  

1.2 Challenge and Motivation 

 

In near future, superconductors have been seen as very advantageous on 

performing a better qubit [36]. Generally, superconducting wire is the best hope to end 

deficiency of the current power grid supply cable. Half of the electrical power lost to 

be heat in the transmission distance of the current commercial power grid cable wire 

[37]. This caveat can be removed by replacing those transmission cable wires with the 

superconducting wires. Therefore, they can operate without any internal resistance. The 

problem is; superconductors only work at the very cold temperature [1]. Nowadays, 

most of superconductor devices are included cooling application [38]. Though the price 

of coolants is getting cheaper [39], it is a finicky process to maintain the 

superconducting state. This is now happened to the Tokamak’s fusion reactor [10]. In 
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order to skip refrigerating the superconductors, scientists came out with an idea so thus 

they can achieve higher Tc, high enough to be in the warm ambient temperature. The 

idea is; to alter/modify the properties of superconductors to such an extent that their Tc 

suit application without requirement of cooling. Hence, it is what happened to the metal 

hydrogen superconductor [40]. This is scientist done improvement they learned from 

BCS theory of conventional superconductors [41]. Such theory propositions electron-

phonon interaction mediated SC in the low Tc element superconductors [1]. In this 

context, experimentalists applied a forceful pressure onto the hydrogen therefore its 

lattice –ion interaction is improved to pursuit SC. Recently, the metal gas compound is 

reported to have superconducting state at 15ºC under 272 GPa pressure [7]. This is in 

oppose to Cuprates, the unconventional superconductors that capable to be 

superconducting without being under pressure instead, their Tc are chemically 

enhanced by doping [42]. They also leave us at surprise when their Tc are able to get as 

high as 155K [43]. This is a bizarre phenomenon according to the BSC electron-phonon 

mediated SC because its SC interaction that sustain Copper pairs is supposed to 

thermally limit at 30K ~ 40 K [44]. Despite their high Tc, Cuprates are not suitable to 

be candidates of the commercial superconducting wire since they are physically 

ceramic [45]. On the other hand, FeBSs naturally are metal even when they are in parent 

state [46]. Additionally, they are stable in large growth crystal [47], robust to impurities 

[20] and most of all, they are great enough to undergo SC by chemical doping [23]. 

Due to these qualities, there are rich variety of dopants reported as the catapults of SC 

in these group of superconductors [27, 47–49] including the dopants that lead to their 

non-superconducting state [31, 50]. Originally, FeBSs have perplexed every scientist 

because they are superconducting within Fe, a magnetic element compound. Which is 

made them the unconventional disobeyed Matthias rules superconductors [53]. 

Matthias guides of synthesizing conventional superconductor has been avoided such 
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element because the long range of Fe moment attraction will collapse the dynamic of 

Cooper pair formation [20]. Guided by the fundamental level understanding,  Fe roles 

in these unconventional superconductors have become more and more defined [16].  

Additionally, credibility of first-principles study complementing the experiments 

results undeniably meet a comprehensive understanding of certain material [52–54]. 

Based on intensive research done by both experimentalists and theorists, soon or later 

the SC mechanism of FeBSs will no longer a mystery. It will be transparent enough to 

reveal clues for deriving the equation of formulating warm Tc temperature FeBS. 

Undoubtedly, FeBS have the best potential to be mass manufacture as resistance-less 

electrical power transmission wire of the future [16]. 

 

1.3 Problem Statements 

 

No superconducting energy band gap (∆𝐸𝑠𝑐) has been identified upon FeBS 

electronic band structures. Available plotted band structures only identified the parent 

FeBS as poor metallic compound [24, 57–59]. Parent FeBS is not FeBS, it must be 

doped or applied pressure in order to be FeBS [51, 60–65]. Probably, the missed 

identification of Fe super-electrons upon quantum energy behavior is what bring 

contradiction onto explaining Fe-SC mechanism though Fe is agreed as the SC 

contributor [32–35, 66–70].  

Moreover, role of Fe in SC is yet to be understood. If Fe is the SC contributor, 

why antiferromagnetic (AFM) order of Fe is to be suppressed for the FeBS to be 

superconducting? [51, 60–65, 71] 


