FIRST-PRINCIPLES STUDY OF BaFe_{2-x}Ni_xAs₂ (x=0, 0.125, 0.25, 1 and 2) SUPERCONDUCTOR USING DENSITY FUNCTIONAL THEORY

KAMALIATI HANUM KAMARUDDIN

MASTER OF SCIENCE (PHYSICS)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

2022

FIRST-PRINCIPLES STUDY OF BaFe_{2-x}Ni_xAs₂ (x=0, 0.125, 0.25, 1 and 2) SUPERCONDUCTOR USING DENSITY FUNCTIONAL THEORY

KAMALIATI HANUM BINTI KAMARUDDIN

Thesis submitted to the Centre for Graduate Studies, Universiti Pertahanan Nasional Malaysia, in fulfillment of the requirement for the Degree of Master (physics).

ABSTRACT

A metal can be known as a superconductive material throughout their transition temperature (T_c) determination. This is done by the macroscopic thermo/electrodynamic experiment. Upon quantum, electronic band theory cannot tell if the material is a superconductor. This is because superconducting band gap (ΔE_{sc}) of the conventional superconductor is too small. However, this might not true for the higher T_c, recently discovered namely Fe-based superconductor (FeBS). This new kind of superconductor is labelled to have an unconventional superconductivity (SC). This is because its SC mechanism could no longer explain the conventional phonon mediated SC. Conventionally, spins (Fe) destroyed phonon SC interaction. Fairly, role of spins played for SC is not yet fully understood. Thereby, it is a chance that the FeBS has other kinds of electronic feature related to its SC mechanism. The aim of this research is to verify electronic features contributed to Fe-SC. This is done by calculating various electronic phase properties of BaFe_{2-x}Ni_xAs₂ using Density Functional Theory (DFT). According to their T_c determination experiment, BaFe₂-_xNi_xAs₂ with x=0, 1 and 2 is the parent FeBS, a non-superconductor (NSC) and the non-Fe; Ni-based superconductor (NiBS), respectively. It is featured on their calculated band structures that the parent FeBS has paired ΔE_{sc} while the NiBS has the inter-band pockets of Charge Density Wave (CDW) which is responsible for the non-Fe SC whereby the NSC has none of those. Referring to the electronic phase diagram data, $BaFe_{2-x}Ni_xAs_2$ with x=0, 0.125 and 0.25 is representing phase before, during and after the Fe-SC. It is concluded from the band structures calculation that the FeBS (x=0.125) is not only depicted an obvious paired ΔE_{sc} but must accompanied by intra-band Spin Density Wave (SDW) nesting pockets to have the spin mediated SC. Also, the SC ended (x=0.25) when it is only intra-band SDW. This proved that spins played role for SC when the atomic Fe distances, its magnetic moment and ordering are precisely favored by the SC interaction. Moreover, direct comparison of the FeBS versus the NiBS is done to understand their mechanism in enhancing SC. Pairing SC mechanism of both superconductors is depicted in their momentum and real space. It is determined from their calculated electronic properties and charge distribution, respectively. This is to demonstrate electrons that responding to SC interaction; super-electrons. It is found that their super-electrons behaved differently. This might be a clue why FeBS (Fe-SC) has higher T_c than the NiBS (non-Fe SC). Overall, the quantum calculation in this firstprinciples study provided insight for super-electrons behavior. Henceforth, it may improve the understanding of unconventional superconductors.

ABSTRAK

Logam diketahui boleh bersifat superkonduktif dari pengesahan suhu kritikal mereka. Inilah yang dijalankan oleh experimen makroskopik termo/elektrodynamik. Dalam kuantum, teori jalur elektronik tidak dapat memberitahu sama ada sesuatu bahan itu superkonduktor atau tidak. Ini kerana jarak jalur tenaga superkonduktor biasa adalah terlalu kecil. Walaubagaimananpun, ini mugkin tidak lagi betul untuk superkonduktor berasas ferum yang baru sahaja ditemui, juga mempunyai suhu kritikal yang lebih tinggi. Jenis superkonduktor yang terbaru ini dilabel mempunyai superkonduktiviti bukan biasa. Ini kerana mekanism superkonduktivitinya tidak lagi menerangkan superkonduktiviti biasa yang dijana oleh fonon. Biasanya, putaran kepunyaan ferum akan memusnahkan interaksi superkonduktiviti fonon itu. Jadi adillah, peranan putaran dalam superkonduktiviti masih tidak difahami sepenuhnya. Oleh itu, berkemungkinan superkonduktor berasas ferum ada ciri elektronik berbeza yang membawa kepada superkonduktiviti. Kajian ini adalah untuk mensahihkan ciri elektronik yang menyumbang kepada superkonduktiviti dengan ferum. Ini dilakukan dengan mengira pelbagai fasa sifat elektronik BaFe_{2-x}Ni_xAs₂ menggunakan Teori Fungsi Ketumpatan. Berdasarkan kepada mengesahan suhu kritikal mereka, BaFe_{2-x}Ni_xAs₂ dengan x=0, 1 dan 2, masing-masingnya adalah induk superkonduktor berasas ferum, bukansuperkonduktor dan superkonduktor bukan berasas ferum (superkonduktor berasas nikel). Ini telah diketengahkan oleh pengiraan struktur jalur mereka bahawa induk superkonduktor berasas ferum ada jarak jalur tenaga berkembar manakala superkonduktor berasas nikel mempunyai poket jalur rapat dari ketumpatan gelombang cas dan bukan-superkonduktor tiada kedua-duanya. Merujuk kepada data gambar rajah fasa elektronik BaFe_{2-x}Ni_xAs₂ dengan x=0, 0.125 dan 0.25 adalah mewakili fasa sebelum, semasa dan selepas superkonduktiviti dengan ferum. Telah disimpulkan dari pengiraan struktur jalur bahawa superkonduktor berasas ferum tidak hanya memaparkan jarak jalur tenaga superkonduktor yang jelas bahkan mesti ditemani oleh ketumpatan gelombang putaran sebagai syarat agar superkonduktivitinya dijana oleh putaran. Juga, fasa superkonduktiviti itu tamat apabila hanya ada jalur antara ketumpatan gelombang putaran. Ini membuktikan bahawa putaran memainkan peranan untuk menjana superkonduktiviti apabila momen, jarak dan susunan atom ferum memihak kepada interaksi superkonduktiviti. Seterusnya, perbandingan terus kepada superkonduktor berasas ferum dari superkonduktor berasas nikel telah dilakukan untuk memahami mekanism mereka dalam mengeluarkan superkonduktiviti. Mekanism berpasangan dalam superkonduktiviti mereka telah ditunjukkan dalam ruangan momentum juga ruangan sebenar. Masing-masingnya yang dikenalpasti dari kiraan sifat elektronik juga pengedaran cas mereka. Ini adalah demonstrasi elektron-elektron yang bertanggungjawab atas interaksi superkonduktiviti; super-elektron. Telah difahamkan bahawa super-elektron mereka berkelakuan berbeza. Jadi mungkin inilah sebabnya suhu kritikal superkonduktor berasas ferum adalah lebih tinggi dari suhu kritikal superkonduktor berasas nikel. Keseluruhannya, kiraan kuantum dalam kajian prinsip-utama ini diharapnya akan menyediakan pandangan bernas tentang superelektron. Sehingganya, mengemaskini pemahaman tentang superkonduktor bukan biasa.

ACKNOWLEDGEMENTS

First and foremost, I would to express my highest gratitude to Allah S.W.T, for the chance He has given me to futher my study at Universiti Pertahanan Nasional Malaysia (UPNM). It is also a blessing for all the strength and abilities to complete this study. Moreover, I would to express my gratitude to both of supervisors, Prof. Dr Muhd Zu Azhan bin Yahya and Dr Mohamad Fariz bin Mohamad Taib for their helpful guidance and never endless support. I am also grateful for their patience, for their sincere motivations and enthusiasm plus immense knowledge. In addition, the helps that have been given have contribute in accomplishing this research and finishing this thesis.

Then, I would like to thank all the members of computational group-imade UiTM. They are Dr Kamil, Dr Sazwan, Dr Wafi, Dr Hafiz, Dr Hazrie, Syazwan, Mimi, Ani, Sya, Haziq and other beloved colleagues especially, Kak Niza, Puan and Cik Tikah. I am thankful for all their endless supports and motivations. I am also very grateful to them for providing me space to work on plus willing to share and discuss useful ideas within the process of completing this research.

I also want to mention my gratitude to my beloved family members, my parent, Kamaruddin Bin Alang Md Dris and Jamaliah Binti Daud, my brother, Afzul Kamal Sufian, and my other siblings, my son, my beloved husband and also my in-law family for all the love and supports that they have been given. They have been an inspiration and very helpful in finishing my research and study.

APPROVAL

I certify that an Examination Committee has met on **09 December 2021** to conduct the final examination of **Kamaliati Hanum Binti Kamaruddin** on his degree thesis entitled "First-Principles Study of BaFe_{2-x}Ni_xAs₂ superconductor using Density Functional Theory". The committee recommends that the student be awarded the Degree of Master (Physics).

Member of the Examination Committee were as follows:

Norhana binti Abdul Halim, PhD

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Chairperson)

Fadhlul Wafi bin Baharudin, PhD

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Internal Examiner)

Ab Malik bin Marwan, PhD

Faculty of Applied Sciences Universiti Teknologi MARA Shah Alam (External Examiner)

APPROVAL

This thesis was submitted to the Senate of Universiti Pertahanan Nasional Malaysia

and has been accepted as fulfilment of the requirement for the degree of Master

(Physics). The members of the Supervisory Committee were as follows.

Muhd Zu Azhan bin Yahya, PhD

Faculty of Defence Science and Technology Universiti Pertahanan Nasional Malaysia (Main Supervisor)

Mohamad Fariz bin Mohamad Taib, PhD

Faculty of Applied Sciences Universiti Teknologi MARA Shah Alam (Co-Supervisor)

UNIVERSITI PERTAHANAN NASIONAL MALAYSIA

DECLARATION OF THESIS

Author's full name	: Kamaliati Hanum binti Kamaruddin
Date of birth	: 30 March1991
Title	: First-Principles Study of BaFe _{2-x} Ni _x As ₂ (x=0, 0.125, 0.25, 1
	and 2) Superconductor Using Density Functional Theory
Academic session	: 2013/2014

I declare that this thesis is classified as:

CONFIDENTIAL	(Contains confidential information under the Official
	Secret Act 1972)*
RESTRICTED	(Contain restricted information as specified by the
	organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open
	access (full text)

I acknowledge that Universiti Pertahanan Nasional Malaysia reserves the right as follows.

- 1. The thesis is the property of Universiti Pertahanan Nasional Malaysia
- 2. The library of Universiti Pertahanan Nasional Malaysia has the right to make copies for the purpose of research only.
- 3. The library has the right to make copies of the thesis for academic exchange.

Signature

Signature of Supervisor/ Dean Of CGS/ Chief Librarian

910330 08 5186 IC/Passport No. PROF DR. MUHD ZU AZHAN YAHYA

Name of Supervisor/ Dean Of CGS/ Chief Librarian

Date:

Date:

Note: *If the thesis is CONFIDENTIAL OR RESTRICTED, please attach the letter from the organization stating the period aletternd reasons for confidentiality and restriction.

TABLE OF CONTENTS

TITLE

ABSTRACT ABSTRAK ACKNOWLED APPROVAL APPROVAL DECLARATIC TABLE OF CC LIST OF TABI LIST OF FIGU LIST OF SYMU LIST OF ABBI LIST OF APPE	GEMENTS N OF THESIS NTENTS ES RES SOLS EVIATIONS NDICES	i ii iii iv v v vi vii xvi xvii xvii xv
CHAPTER 1	INTRODUCTION	1
	1.1 Background of Research	1
	1.2 Challenge and Motivation	3
	1.3 Problem Statements	5
	1.4 Research Objectives	6
	1.5 Scope and Limitation of Re	esearch 6
	1.6 Significance of Research	8
CHAPTER 2	LITERATURE REVIEW	9
	2.1 Introduction	9
	2.2 Superconductor	10
	2.3 Theory of Superconductivi	ty 11
	2.4 Conventional Superconduc	tor 13
	2.5 Unconventional Supercond	uctor 13
	2.6 Fe-Based Superconductor	15
	2.7 $BaFe_2As_2$	15
	2.7.1 Structural Properties	s 16
	2.7.2 Electronic Propertie	s 20
	2.7.3 Phonon properties	27
	2.8 Electron-Doped BaFe ₂ As ₂	30
	2.9 Summary of Chapter	36
CHAPTER 3	COMPUTATIONAL METHO	D 38
	3.1 Introduction	38
	3.2 First-Principles Study	38
	3.3 Density Functional Theory	40
	3.4 CASTEP	41
	3.5 Material Studio Visualizer	44
	3.6 Computational method	46
	3.6.1 Structure Constructi	on 46
	3.6.2 Geometrical Optimi	zation 48
	3.6.3 Running Properties	Calculation 50

	3.6.4	Analysis of calculation result	50
	3.6.5	Flowchart of Research	51
3.7	Prope	rties Calculation Setting	54
	3.7.1	Total Structural Energy	55
	3.7.2	Structural Properties	55
	3.7.3	Phonon Properties	59
	3.7.4	Electronic Properties	60
	3.7.5	Charge Distribution	62
3.8	Optim	num Exchange Correlation Functional	65
3.9	Summ	nary of Chapter	67

CHAPTER 4COMPARATIVE STUDIES OF STRUCTURAL,
MAGNETIC, ELECTRONIC PROPERTIES AND CHARGE
DISTRIBUTION OF BaFe2-xNixAs2 (x = 0, 1, 2)684.1Introduction68

		00
4.2	Computational Details	68
4.3	Convergence Test with Respect To K-point And Cut-Off	
	Energy Sampling	69
4.4	Structural Properties	74
4.5	Electronic Properties	78
	4.5.1 Density of States	78
	4.5.2 Band Structures	80
4.6	Charge Distribution and Atomic Mulliken Population	82
4.7	Summary of Chapter	88

CHAPTER 5 COMPARATIVE STUDIES OF STRUCTURAL, MAGNETIC, ELECTRONIC PROPERTIES AND CHARGE

DIS	TRIBUTION OF BaFe _{2-x} Ni _x As ₂ ($x = 0, 0.125, 0.25$)	89
5.1	Introduction	89
5.2	Computational Details	90
5.3	Convergence Test with Respect To K-Point and Cut-Off	
	Energy Sampling	91
5.4	Phase Stability	95
	5.4.1 AFM Configuration of BaFe ₂ As ₂	95
	5.4.2 Substituting Configuration of Ni doped BaFe ₂ As ₂ .	.104
5.5	Structural Properties	107
5.6	Electronic Properties	112
	5.6.1 Density of States	112
	5.6.2 Band Structures	113
5.7	Charge Distribution and Mulliken Population Analysis	116
5.8	Possible Explanation for Spins Mediated SC	121
5.9	Summary of Chapter	124

CHAPTER 6 COMPARATIVE STUDIES OF PHONON PROPERTIES AND SUPERCONDUCTIVITY OF BaFe2-xNixAs2 (x = 0.125,

2)		125
6.1	Introduction	125
6.2	Computational Details	125
6.3	Phonon Properties	126
6.4	Superconductivity in Energy-Momentum Space	130

		6.4.1 Computed Tc and Superconducting Energy Ga	ap131
		6.4.2 Pairing Mechanism	134
	6.5	Superconductivity in Real Space	138
		6.5.1 AFM Suppression	138
		6.5.2 Pairing Mechanism	140
	6.6	Summary of Chapter	142
CHAPTER 7	CON	ICLUSION AND FUTURE DIRECTION	143
	7.1	Conclusions	143
	7.2	Recommendation for Future Works	145
REFERENCES			146
APPENDICES			163
BIODATA OF S	TUD	ENT	165
LIST OF PUBLI	CAT	ION	166

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 1.1	Scope and Limitation of Research	7
Table 2.1	Comparison between Cuprates and FeBS	14
Table 2.2	Structural refinement done at room and low temperature	17
	for BaFe ₂ As ₂ compound	
Table 2.3	Calculated crystal properties of <i>I4/mmm</i> tetragonal	19
	BaFe ₂ As ₂	
Table 2.4	Calculated crystal properties of <i>Fmmm</i> orthorhombic	19
	BaFe ₂ As ₂	
Table 2.5	Computational setting for calculated electronic and	21
	phonon properties of I4/mmm tetragonal BaFe ₂ As ₂	
Table 2.6	Computational setting for calculated electronic and	21
	phonon properties of <i>Fmmm</i> orthorhombic BaFe ₂ As ₂	
Table 2.7	BaFe ₂ As ₂ unit cell with list of its doped compound and	30
	their T _c	
Table 2.8	Phase transition of BaFe _{2-x} Ni _x As ₂ ($x = 0, 1, 2$)	34
Table 2.9	The superconductivity, structure and magnetic properties	36
	of BaFe _{2-x} Ni _x As ₂ at superconducting temperature of	
	$0K < T_c \le 22K$ versus at non-superconducting temperature	
Table 2.10	Summary of Literature	37
Table 3.1	Specification of software package for VASP, WIEN2K,	41
	CASTEP, QUANTUM ESPRESSO and PWSCF program	
	codes	
Table 3.2	Feature and Capabilities of CASTEP	43
Table 3.3	The atomic position and lattice parameter for construction	48
	of BaFe _{2-x} Ni _x As ₂ structures	
Table 3.4	BZ path of BaFe _{2-x} Ni _x As ₂ structures	56
Table 3.5	Direction and critical point description of BZ of BaFe ₂₋	57
	_x Ni _x As ₂	
Table 3.6	Computational setting of determining optimum EXC for	66
	BaFe _{2-x} Ni _x As ₂ calculation setting	
Table 4.1	<i>K</i> -point and cut-off energy size as calculation parameters	70
	in study of BaFe _{2-x} Ni _x As ₂ (x=0,1, 2) within CASTEP	
	(GGA-PBE) exchange functional	
Table 4.2	(left) Unit cell structures and (right) enlisted lattice	76
	properties of AFM orthorhombic BaFe ₂ As ₂	
Table 4.3	(left) Unit cell structure and (right) listed lattice	77
	properties of NM tetragonal BaFeNiAs ₂	
Table 4.4	(left) Conventional unit cell and (right) listed lattice	77
	properties of NM triclinic BaNi ₂ As ₂	<i>.</i> .
Table 4.5	Mulliken Atomic Analysis of low temperature BaFe ₂₋	84
	$_xNi_xAs_2$ (x=0, 1, 2) structures	
Table 5.1	<i>K</i> -point and cut-off energy size as calculation parameters	91
	in study for orthorhombic (Fmmm) BaFe _{2-x} Ni _x As ₂ (x=0,	

	0.125, 0.25) within CASTEP (GGA-PBE) exchange functional	
Table 5.2	Net magnetic order of the 4 Fe atoms pairs on (001), (100) and (010) planes	99
Table 5.3	Lattice parameter and volume of orthorhombic BaFe ₂ As ₂ for AFM 1 to AFM 6 configuration structures	101
Table 5.4	Spin direction for doping configuration structures of BaFe _{1.75} Ni _{0.25} As ₂ adopted the AFM 4 spin configuration of BaFe ₂ As ₂	105
Table 5.5	Structural properties data obtained for $BaFe_{2-x}Ni_xAs_2$ (x = 0, 0.125, 0.25)	111
Table 5.6	Mulliken Population Analysis of BaFe _{2-x} Ni _x As ₂ (x=0, 0.125, 0.25)	117
Table 5.7	The unconventional Fe-SC explained based on the three different phase SC properties of $BaFe_{2-x}Ni_xAs_2$ (x=0, 0.125, 0.25)	122
Table 6.1	Experimental and calculated critical temperature, T_c and superconducting gap, $2\Delta E_{sc}$ of the 122-type superconductors	134

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Literature of superconductors enclosed on present thesis	9
Figure 2.2	Graph resistance versus temperature for non-	10
0	superconductor and superconductor substances	
Figure 2.3	Critical phase diagram of superconductor	11
Figure 2.4	Cooper pair bound due to attractive electron-phonon	12
0	interaction	
Figure 2.5	Parent compounds of FeBS (a) LaFeAsO (b) BaFe ₂ As ₂	15
0	(c) LiFeAs (d) FeSe	
Figure 2.6	Structures of BaFe ₂ As ₂ (left) before and (right) after	17
8	$T_{S/N}$ phase transition	
Figure 2.7	(a-f) ARPES derived Fermi Surfaces recorded at	22
8	different photon energies in linear vertical polarisation	
	corresponding to the high symmetry point in the BZ (g)	
	Twinned Fermi surface measured using 25 eV photons	
	in linear horizontal polarisation	
Figure 2.8	Calculated iso-surfaces of FSs in BZ of (a) NM	23
I Igui e 210	tetragonal (b) AFM orthorhombic BaFe ₂ As ₂ . Calculated	
	cut of FSs in BZ of (c) NM tetragonal and (d) AFM	
	orthorhombic BaFe ₂ As ₂	
Figure 2.9	Measured and calculated band structures of BaFe ₂ As ₂	24
I Igui e Zi>	Measurement is performed using $hv = 62 \text{ eV}$ at (a) 154K	2.
	and (b) 7–10K at high-symmetry distinct hand	
	dispersions along -X and -Y in the linear horizontal	
	nolarisation (c) DET calculation of BaEe As a tetragonal	
	phase with hand dispersions averaged along the kz axis	
	(d) Calculated electronic band structures of PaEae As in	
	the collineor AFM state	
Figure 2.10	DOS calculated from PaEe. As. (a f) Total DOS and	25
rigure 2.10	DOS calculated Holli DaFe ₂ As ₂ (a-1) Total DOS and	23
	partial projected DOS of two Fe atom in the $BaFe_2As_2$ at	
	Not phase for the $P = 0$ and 54 GPa pressures (g) The total and DDOS for Ea2d and A a/n arbitral of magnetic	
	total and PDOS for Fe3d and As4p orbital of magnetic	
	orthornombic phase obtained by the Quantum Espresso	
D' 0.11		26
Figure 2.11	Charge distribution calculated from BaFe ₂ As ₂ .	26
F '	Observe distribution colorates of forms D. D. A.	27
Figure 2.12	Charge distribution calculated from BaFe ₂ As ₂	27
E	Toma mature demondence of Doman monones for	20
Figure 2.13	Temperature dependence of Raman response for $D_{2}E_{2}$	28
D• 0.14	BaFe ₂ As ₂ in the (x, y) configuration.	20
Figure 2.14	Calculated phonon dispersion presented along its	29
D' 0 1 5	measured data for $BaFe_2As_2$.	•
Figure 2.15	Calculated and experimental data of Density of Phonon	29
	State (DPOS) for $BaFe_2As_2$.	<u> </u>
Figure 2.16	Comparison of electronic phase diagram of (left) hole-	31
	and (right) electron-doped BaFe ₂ As ₂	

Figure 2.17	Cell unit of calculated BaNi ₂ As ₂	32
Figure 2.18	Shifted DOS near Ef due to increasing Ni dopant % in	33
	BaFe _{2-x} Ni _x As ₂	
Figure 2.19	Phase diagram of BaFe _{2-x} Ni _x As ₂	35
Figure 3.1	Concept of the multi-scale characterization to compare the capability of the CASTEP in Material Studio	44
Figure 3.2	Materials Studio Version 6.1	45
Figure 3.3	Set by step chart of creating document for the model structure	47
Figure 3.4	Calculation set-up for geometrical optimization of BaFe _{2-x} Ni _x As ₂ structures	49
Figure 3.5	Running calculation from CASTEP module	50
Figure 3.6	Analyzing option from CASTEP module	50
Figure 3.7	Process of the Molecular Modelling (in most cases)	51
	involves in first principles study	
Figure 3.8	Computational Method for Molecular Modelling	52
Figure 3.9	Molecular Modelling (in most cases)	53
Figure 3.10	Flowchart of doped BaFe _{2-x} Ni _x As ₂	53
Figure 3.11	BZ of BaFe _{2-x} Ni _x As ₂ structures for (a) orthorhombic (b) tetragonal, and (c) triclinic in their conventional unit cell	57
Figure 3.12	BZ in (a) conventional unit cell and primitive unit cell of $BaFe_{2-x}Ni_xAs_2$ for (b) un-doped (c) optimal-doped and (d) over-doped	58
Figure 3.13	Calculation setting for phonon properties of superconducting BaFe _{2-x} Ni _x As ₂ structures	59
Figure 3.14	The Energy Bands Structures of Metals, Semiconductors and Insulators	60
Figure 3.15	Calculation setting for electronic properties in CASTEP computer code	61
Figure 3.16	Iso-surfaces of (a) ρ_T , (b) $\Delta \rho_A$ and (c) $\Delta \rho_L$ of orthorhombic BaFe ₂ Ni _x As ₂ structures	63
Figure 3.17	Iso-surfaces of ρ_T , $\Delta \rho_A$, and $\Delta \rho_L$ of BaFe _{2-x} Ni _x As ₂ for orthorhombic tetragonal and trialinia structures	64
Figure 3.18	Calculation setting for charge distribution of BaFe ₂ .	65
Figure 3.19	Total energy versus AFM orthorhombic BaFe _{2-x} Ni _x As ₂ structures of four different exchange correlation setting	67
Figure 4.1	Convergence test graph of k -point grid for orthorhombic (Emmm) BaFe ₂ As ₂	71
Figure 4.2	Convergence test graph of cut-off energy for orthorhombic (<i>Emmn</i>) BaFe ₂ As ₂	72
Figure 4.3	Convergence test graph of k -point grid for tetragonal (I4/ <i>mmm</i>) BaFeNiAs ₂	72
Figure 4.4	Convergence test graph of cut-off energy for tetragonal (I4/mmm) BaFeNiAs ₂	73
Figure 4.5	Convergence test graph of <i>k</i> -point grid for triclinic ($P\overline{1}$) BaNi ₂ As ₂	73
Figure 4.6	Convergence test graph of energy-cut off for triclinic $(P\overline{1})$ BaNi ₂ As ₂	74

Figure 4.7	DOS and PDOS of low temperature $BaFe_{2-x}Ni_xAs_2$ for (a) x=0, (b) x=1, and (c) x=2	80
Figure 4.8	Calculated electronic band structures of low temperature BaFe _{2-x} Ni _x As ₂ (x=0, 1, 2)	82
Figure 4.9	Contour plot of total charge density, ρ_T on ($\overline{1}10$) and (100) planes of low temperature BaFe _{2-x} Ni _x As ₂ (x=0, 1, 2)	85
Figure 4.10	Contour plot of charge density difference between atoms, $\Delta \rho_A$ on ($\overline{1}10$) and (100) planes of low	86
Figure 4.11	temperature BaFe _{2-x} Ni _x As ₂ (x=0, 1, 2) Contour plot of charge density difference between layers, $\Delta \rho_L$ on ($\bar{1}10$) and (100) planes of low	87
Figure 5.1	Convergence test graph of (a) k -point grid and (b) cut- off energy for BaFe ₂ As ₂	92
Figure 5.2	Convergence test graph of (a) <i>k</i> -point grid and (b) cut- off energy for BaFe _{1.875} Ni _{0.125} As ₂	93
Figure 5.3	Convergence test graph of (a) k -point grid and (b) cut- off energy for BaFe _{1.75} Ni _{0.25} As ₂	94
Figure 5.4	(a) 19 possible AFM order configurations and their equivalent (b) Total structural energy versus structures of different AFM configuration from first-principles calculation	96
Figure 5.5	Spin ordering in <2,2,2> direction of orthorhombic BaFe ₂ As ₂ for AFM1 to AFM 6	102
Figure 5.6	Atomic Fe position of orthorhombic BaFeaAsa	104
Figure 5.7	Graph of total structural energy versus AFM order/ substituting configuration	106
Figure 5.8	Conventional unit structure of BaFe ₂ As ₂ at (a) room temperature and (b) low temperature	107
Figure 5.9	The unit cell structure of $BaFe_{2-x}Ni_xAs_2$ at low temperature for (a) x=0, (b) x=0.125, (c) x=0.25	108
Figure 5.10	DOS and PDOS of low temperature structure $BaFe_{2-x}Ni_xAs_2$ (x = 0, 0.125, 0.25)	113
Figure 5.11	Calculated electronic band structures of low temperature BaFe _{2-x} Ni _x As ₂ (x=0, 0.125, 0.25)	115
Figure 5.12	Contour plot of total charge density, ρ_T on ($\overline{1}10$) and (100) planes of low temperature BaFe _{2-x} Ni _x As ₂ (x=0, 0.125, 0.25)	118
Figure 5.13	Contour plot of charge density difference between atoms, $\Delta \rho_A$ on ($\overline{110}$) and (100) planes of low temperature BaFe _{2-x} Ni _x As ₂ (x=0, 0.125, 0.25)	119
Figure 5.14	Contour plot of charge density difference between layers, $\Delta \rho_L$ on ($\bar{1}10$) and (100) planes of low	120
Figure 6.1	temperature BaFe _{2-x} N _{1x} As ₂ (x=0, 0.125, 0.25) (a) triclinic cell of NiBS inside its $2 \times 2 \times 2$ tetragonal unit supercell (b) "tetragonal" <i>Fmmm</i> superconducting	128

	structures of FeBS (c) superconducting structure of NiBS	
Figure 6.2	Main panel : Phonon dispersion of (right) BaNi ₂ As ₂ and (left) BaFe _{1.875} Ni _{0.125} As ₂ Sub-panel : Phonon density of states of (right) BaNi ₂ As ₂ and (left) BaFe _{1.875} Ni _{0.125} As ₂	130
Figure 6.3	DOS and PDOS of $BaNi_2As_2$ and $BaFe_{1.875}Ni_{0.125}As_2$ superconductors	132
Figure 6.4	Calculated electronic band structures of BaNi ₂ As ₂ and BaFe _{1.875} Ni _{0.125} As ₂ superconductors	135
Figure 6.5	Illustration of pairing symmetry on Fermi surfaces of BaNi ₂ As ₂ and BaFe _{1.875} Ni _{0.125} As ₂ superconductors within their corresponding BZ	137
Figure 6.6	Contour plots (a) $\Delta \rho_A$ and (b) $\Delta \rho_L$ on (0, 0, 4) plane of BaFe _{1.875} Ni _{0.125} As ₂ optimized structure revealing 2 dx ² - y ² of Ni/Fe orbitals (c) Sketched figure of Ni/Fe orbitals in 2 × 2 supercell of (a) (d)-(g) Possible spin fluctuation sequences of domain within yellow dotted line in Ni/FeAs layer of 2 × 2 supercell BaFe _{1.875} Ni _{0.125} As ₂ superconductor	139
Figure 6.7	(a)-(b) Contour plots $\Delta \rho_L$ on 110 planes of NM triclinic BaNi ₂ As ₂ optimized structure revealing zig-zag chain of Ni dx ² -y ² orbitals. (c) NiAs layer in 2 × 2 × 2 supercell of NM triclinic BaNi ₂ As ₂ depicting the zig-zag chain of Ni ions. Contour plots (d) $\Delta \rho_A$ and (e) $\Delta \rho_L$ on (0, 0, 12) plane BaFe _{1.875} Ni _{0.125} As ₂ optimized structure revealing 2 dx ² -y ² of Fe orbitals (f) Sketched figure of 2 dx ² -y ² Fe orbitals in 2 × 2 supercell of (d) (g) Sketched figure of dx ² -y ² orbitals of Ni ions in (c) (h) (i) within spin mediated SC interpretation (i) Figure (f) as the plane in [110] direction (g)-(i) Both figures are showing that the zig-zag chain of dx ² -y ² (z (x ² -y ²)) Ni (Fe) orbitals enable the Cooper pair formation by interaction of charge poles	141

LIST OF SYMBOLS

- T_c Critical temperature
- T_S Structural phase transition temperature
- T_N Neël Temperature
- H_c Critical magnetic field
- $J_c\ \ -\ \ Critical \ current \ density$
- $E_{\rm f}~$ ~ Fermi energy
- λ_{eph} Electron-phonon coupling
 - γ Electronic specific-heat coefficient
 - ρ Charge density
- ρ_T Total charge density
- $\Delta \rho_A$ Difference density charge between atoms
- $\Delta \rho_L$ Difference density charge between layers
 - $E_g\,$ $\,$ Energy band gap
- ΔE_{sc} Superconducting energy band gap

LIST OF ABBREVIATIONS

SC	-	Superconductivity
NSC	-	Non-Superconductor
NM	-	Non-Magnetic
PM	_	Para-Magnetic
AFM	_	Anti-Ferromagnetic/magnetism
FM	-	Ferromagnetic/magnetism
FrM	-	Ferrimagnetic/magnetism
SDW	-	Spin Density Wave
CDW	-	Charge Density Wave
FeBS	-	Fe-based superconductor
NiBS	-	Ni-based superconductor
BCS	-	Bardeen–Cooper–Schrieffer
BZ	-	Brillouin Zone
FS	-	Fermi Surface
AFQ	-	Antiferro-Quadrupole
Fe	-	Ferrum/Iron
Ni	-	Nickel
As	-	Arsenide
Ba	-	Barium
Κ	-	Potassium
Р	-	Phosphorus
DFT	-	Density Functional Theory
CASTEP	-	Cambridge Serial Total Energy Package
GGA	-	Generalized Gradient Approximation
PBE	-	Perdew-Burke-Ernzerhof
PBEsol	-	PBE for solid
LDA	-	Local Density Approximation
MS	-	Material Studio
EXC	-	Exchange Correlation Functional
DOS	-	Density of States
PDOS	-	Partial Density of States
DPOS	-	Density of phonon of states
VCA	-	Virtual Crystal Approximation
VASP	-	Vienna Ab-initio Simulation Package
QE	-	Quantum Espresso
PWSCF	-	Plane Wave Self Consistent Field
FLPAW	-	Full-potential (Linearized) Augmented Plane Wave
PAW	-	Augmented Plane-Wave
ARPES	-	Angle Resolved Photonemission Spectroscopy

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix	Possible Doping Configuration of BaFe _{1.75} Ni _{0.25} As ₂ and Its Equivalents	162

CHAPTER 1

INTRODUCTION

1.1 Background of Research

Since the accidentally discovery of superconductivity (SC) in cooled solid mercury [1], more and more element and compound materials have been studied at low temperature [2–4]. Until now, the progress on finding new superconductor materials keeps ascending [5-7]. The bizarre behaviour of a superconductor such as supermagnet, pinning vortex, and Johenson jumping has significantly changed the understanding of condensed matter system [3, 8-9]. The advance technology offered by this fascinating material has improved human life wholly. The fusion reactor, hovering vehicle prototype and the most sensitive magnetometer are all thanks to SC [3, 10-11]. Not to mention, the 'super' conducting phenomenon which is conducting electricity by zero resistivity lured many researchers to propose the new superconductor as the best power generator cable [12]. However, every magnificent has pro and cons. SC is a complex state that only happens at certain low temperature which is known as transition or critical temperature, $T_c[1]$. It is a goal to achieve a high T_c , high enough to be superconducting in power generator cable without any coolant applied. This is motivated by the high cost of stabilizing the SC state [13]. Despite the highest T_c by Cuprate group of superconductors, this type of superconductor is brittle ceramic which is not easily moulded into wire [14]. Moreover, cuprates are unsuitable for application

requiring actual superconducted current because they do not form large, continuous superconducting domains, but only clusters of micro-domains within which SC occurs [15]. On the other hand, Fe-based superconductor (FeBS) is the first choice candidate for superconducting power generator cable due to the physically able to be fabricated into wire [16]. This is because FeBSs are poor metal even when they are not superconducting [17–19]. However, there is no SC theory established for FeBS yet leave alone make it superconducting at the room temperature [20]. Nonetheless, many scientific papers have been established since the discovery of FeBS due to its potential as a superconducting cable [20]. Most of the papers are to recognize the properties of FeBSs especially their parent compound [21–23]. Among the FeBSs, parent compound of 122-type family does not share the Fe atom with the neighbouring unit cell summarize the study on Fe in the FeBS is per unit cell [24]. Plus, direct interaction of Ni on Fe on the electron-doped BaFe₂As₂ would tell the role of Fe play in FeAs layer in the FeBS [25]. These both are important in order to understand the differentiation between Matthias rule obeying of most Bardeen-Cooper-Schrieffer (BCS) superconductor and the SC in the magnetic FeBS that is remain unconcluded [20]. Nevertheless, simpler structure by FeBSs as compared to Cuprates, does offered better enabling to be studied in first-principles approaches [26-27]. Therefore, abundance of experimental works has successfully reported and supported by many theoretical works [28-31]. Truly, a decade is fairly too soon to conclude any SC theory of vast FeBS materials but every study regarding it will bring us one step closer to the understanding of the unconventional SC and of course, with lots of study reported, it will help researching become less tedious. For example, there are group researchers proposed possible SC mechanism for FeBS such as spin density wave (SDW), spin-phonon, ±swave pairing versus d-wave pairing gap [32–35].

In this thesis, first-principles study is done on the SC related properties such as phonon and electronic for SC mechanism in BaFe_{2-x}Ni_xAs₂ superconductors. superconducting BaFe_{2-x}Ni_xAs₂ is one of the FeBS. Without Fe (x=2), BaFe_{2-x}Ni_xAs₂ is a Ni-based superconductor (NiBS). Their SC related properties were calculated using density functional theory (DFT) with Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) exchange correlation within the Cambridge Serial Total Energy Package (CASTEP) computer code. This work is an aid to theoretically understand the unconventional SC mechanism in a way to provide more insight of establishing a SC theory that involving magnetic element. May the theory potentially develop an equation to formulate the higher T_c superconductor if not, the room temperature superconductor. Next, make it possible to manufacture the electric power generator cable with 100% efficiency.

1.2 Challenge and Motivation

In near future, superconductors have been seen as very advantageous on performing a better qubit [36]. Generally, superconducting wire is the best hope to end deficiency of the current power grid supply cable. Half of the electrical power lost to be heat in the transmission distance of the current commercial power grid cable wire [37]. This caveat can be removed by replacing those transmission cable wires with the superconducting wires. Therefore, they can operate without any internal resistance. The problem is; superconductors only work at the very cold temperature [1]. Nowadays, most of superconductor devices are included cooling application [38]. Though the price of coolants is getting cheaper [39], it is a finicky process to maintain the superconducting state. This is now happened to the Tokamak's fusion reactor [10]. In order to skip refrigerating the superconductors, scientists came out with an idea so thus they can achieve higher T_c, high enough to be in the warm ambient temperature. The idea is; to alter/modify the properties of superconductors to such an extent that their T_c suit application without requirement of cooling. Hence, it is what happened to the metal hydrogen superconductor [40]. This is scientist done improvement they learned from BCS theory of conventional superconductors [41]. Such theory propositions electronphonon interaction mediated SC in the low T_c element superconductors [1]. In this context, experimentalists applied a forceful pressure onto the hydrogen therefore its lattice -ion interaction is improved to pursuit SC. Recently, the metal gas compound is reported to have superconducting state at 15°C under 272 GPa pressure [7]. This is in oppose to Cuprates, the unconventional superconductors that capable to be superconducting without being under pressure instead, their T_c are chemically enhanced by doping [42]. They also leave us at surprise when their T_c are able to get as high as 155K [43]. This is a bizarre phenomenon according to the BSC electron-phonon mediated SC because its SC interaction that sustain Copper pairs is supposed to thermally limit at $30K \sim 40 \text{ K}$ [44]. Despite their high T_c, Cuprates are not suitable to be candidates of the commercial superconducting wire since they are physically ceramic [45]. On the other hand, FeBSs naturally are metal even when they are in parent state [46]. Additionally, they are stable in large growth crystal [47], robust to impurities [20] and most of all, they are great enough to undergo SC by chemical doping [23]. Due to these qualities, there are rich variety of dopants reported as the catapults of SC in these group of superconductors [27, 47–49] including the dopants that lead to their non-superconducting state [31, 50]. Originally, FeBSs have perplexed every scientist because they are superconducting within Fe, a magnetic element compound. Which is made them the unconventional disobeyed Matthias rules superconductors [53]. Matthias guides of synthesizing conventional superconductor has been avoided such

element because the long range of Fe moment attraction will collapse the dynamic of Cooper pair formation [20]. Guided by the fundamental level understanding, Fe roles in these unconventional superconductors have become more and more defined [16].

Additionally, credibility of first-principles study complementing the experiments results undeniably meet a comprehensive understanding of certain material [52–54]. Based on intensive research done by both experimentalists and theorists, soon or later the SC mechanism of FeBSs will no longer a mystery. It will be transparent enough to reveal clues for deriving the equation of formulating warm T_c temperature FeBS. Undoubtedly, FeBS have the best potential to be mass manufacture as resistance-less electrical power transmission wire of the future [16].

1.3 Problem Statements

No superconducting energy band gap (ΔE_{sc}) has been identified upon FeBS electronic band structures. Available plotted band structures only identified the parent FeBS as poor metallic compound [24, 57–59]. Parent FeBS is not FeBS, it must be doped or applied pressure in order to be FeBS [51, 60–65]. Probably, the missed identification of Fe super-electrons upon quantum energy behavior is what bring contradiction onto explaining Fe-SC mechanism though Fe is agreed as the SC contributor [32–35, 66–70].

Moreover, role of Fe in SC is yet to be understood. If Fe is the SC contributor, why antiferromagnetic (AFM) order of Fe is to be suppressed for the FeBS to be superconducting? [51, 60–65, 71]